
Fully Coupled Nonlinear Fluid Flow and Poroelasticity
in Arbitrarily Fractured Porous Media: A Hybrid-
Dimensional Computational Model
L. Jin1 and M. D. Zoback1

1Department of Geophysics, Stanford University, Stanford, CA, USA

Abstract We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in
arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The
fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them;
mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and
nonpropagating), leading to “apparent discontinuity” in strain and stress across them. Local nonlinearity
arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high
aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity
and simple shear strain within each fracture, rendering the coupled problem numerically more tractable.
Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to
unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element
method is developed, which is free from stability issues for a drained coupled system. The fully
implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the
Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains
a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the
modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and
stiffness matrices therefore allowing the development of independent subroutines for treating fractures
within a standard computational framework. Our computational model provides more realistic inputs for
some fracture-dominated poromechanical problems like fluid-induced seismicity.

1. Introduction

Coupled fluid pressure and solid stress occurring in geological media are important inputs for studying var-
ious geophysical and engineering problems, including induced seismicity associated with CO2 sequestration
or wastewater injection and stimulation of low-permeability hydrocarbon and geothermal reservoirs. A geo-
logical medium is often represented with a porous and linearly elastic solid infiltrated by fluid, referred to as
the Biot poroelastic system (Biot, 1941). In terms of coupling, the Biot’s governing laws state that the pore
pressure gradient acts as an equivalent body force that drives changes in deformation and stress, and the
volumetric strain rate acts as an equivalent fluid source that drives changes in fluid pressure. Some classic
analytical solutions have been derived for predicting poromechanical responses of the Biot system, provided
appropriate geometric settings, boundary conditions, and material property distributions (e.g., Booker &
Carter, 1986; Cleary, 1977; Rudnicki, 1986; Segall, 1985; Wang & Kümpel, 2003). For a more general Biot
system, numerical solutions are also available. These solutions are obtained using various space discretization
methods, including, for example, the mixed finite element method (e.g., Ferronato et al., 2010; Korsawe et al.,
2006), the finite volume method (e.g., Nordbotten, 2014), and their combinations (e.g., Castelletto et al.,
2015b), and they can be advanced in time in either a fully coupled manner or a proven stable sequentially
coupled manner (e.g., Kim et al., 2011; White et al., 2016).

Often the geological medium is also embedded with a preexisting discrete fracture network (DFN).
Including a DFN in the system introduces not only additional constitutive behaviors, either linear or
nonlinear (Hu et al., 2017; Rutqvist & Stephansson, 2003), but also constraining and coupling on interfaces
and intersections (e.g., Beavers & Joseph, 1967; Formaggia et al., 2014; Pouya, 2012). In addition, field
variables and their gradients often become discontinuous across fractures, commonly referred to as
“strong” and “weak” discontinuities (e.g., Borja, 2013; Hansbo & Hansbo, 2004). Specifically, for a fluid-solid
coupled problem in which it is the fluid pressure and the solid displacement that are commonly selected
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as the primary unknowns, we define a fracture as the following type of discontinuity based on a given
scenario: (1) a hydraulic strong discontinuity, when the fracture is nonconductive and is embedded within
a conductive matrix, and therefore, the pressure across it becomes discontinuous; (2) a hydraulic weak
discontinuity, when the fracture is more conductive than the surrounding matrix, leading to discontinuous
fluid flux across it; (3) a mechanical strong discontinuity, when the fracture opens or slides and the solid
displacement is thus discontinuous; (4) a mechanical weak discontinuity, when the fracture behaves similar
to a localized deformation band (i.e., shear band and compaction band), rendering the solid strain
discontinuous.

Aside from the additional physics, the geometric complexity and the associated anisotropy and heteroge-
neity in material property also impose significant challenges on the modeling of a DFN-matrix system. To
facilitate the setup of a mathematical model, a common representation is to define an equivalent conti-
nuum characterized by effective, homogenized, or upscaled parameters. For example, for the solid
problem, an equivalent compliance or stiffness tensor based on analytical methods has been calculated
for a few types of regularly fractured solid (Hudson & Liu, 1999; Liu et al., 2000). Similarly, for the fluid
problem, a variety of models have been developed, including the classic dual-porosity double-permeability
(DPDP) model (Barenblatt et al., 1960; Warren & Root, 1963). This model regularizes a fractured medium
into a sugar-cube representation and calculates a shape factor, which can also be analytically based
(Lim & Aziz, 1995); two sets of governing equations are formulated over the fracture domain and the
matrix domain, respectively, and interact through mass exchange in response to the pressure gradient.
This concept has been extended to triple-continuum (Wu et al., 2004) and multicontinuum models
(Dietrich et al., 2005), with even multirate mass transfer (Tecklenburg et al., 2016). The major challenge
for applying this family of models lies in the appropriate characterization of the DFN geometry. A remedy
is to carry out the mass exchange in a computational domain rather than a physical domain, leading to a
DPDP-reminiscent model without using shape factors (Lamb et al., 2013; Norbeck et al., 2015). On the
other hand, some single-continuum models, which utilize flow-based upscaled hydraulic properties,
provide an alternative that is less geometry-dependent (e.g., Berkowitz et al., 1988; Chen et al., 2015).
An even simpler model is to smear the hydraulical properties of a fracture onto the background matrix
according to certain geometry-based mapping rules (Lamb et al., 2013). In the above models, the original
DFN is not resolved in a spatially explicit fashion. This drawback is overcome by an increasingly popular
approach, namely, the discrete fracture-matrix model (Karimi-Fard et al., 2003; Sandve et al., 2012), which
retains a given DFN and accounts for flow in both the matrix and fractures; thus, the model is physically
more representative. This model can be reduced to a discrete fracture model, which is appropriate when
the system is dominated by highly conductive fractures, or the porous matrix is nearly impermeable (e.g.,
Erhel et al., 2009; Hyman et al., 2015). The model can also be modified by using empirical (Unsal et al.,
2010) or averaged (Sandve et al., 2014) matrix flow for beneficiary trade-off between accuracy and effi-
ciency. Since fractures often occur at multiple length scales, the discrete fracture-matrix model becomes
computationally demanding if all fractures are to be resolved. As a hybrid of the equivalent continuum
model and the discrete fracture-matrix model, a family of multiscale and hierarchical models has been
proposed, in which larger-scale fractures are explicitly represented through coarse meshing, whereas
smaller-scale fractures are upscaled, and their coupling on the boundaries are enforced (Hou & Wu,
1997; Lee et al., 2001). For coupled poromechanical problems, it is important to explicitly represent at least
those large-scale fractures, as they often can cause statistically significant variations (Berkowitz, 2002;
Hardebol et al., 2015; Hirthe & Graf, 2015; Vujević et al., 2014), thus dominating the pressure field and
the stress state within the domain and on fractures.

In terms of space discretization, explicit representation of fractures is associated with several issues. First, we
must choose the fracture dimensionality. In the case of a small number of finite-thickness fractures, equal-
dimensional representation of fractures and the matrix can be used (e.g., Gebauer et al., 2002; Geiger et al.,
2004). This approach offers great convenience, as the same formulation can be used across the entire
domain, but becomes impractical in the case of a large number of fractures. In addition, a fracture usually
has a high aspect ratio, with its thickness orders of magnitude lower than its length and a typical mesh size
of the matrix. Explicitly resolving fracture thickness through local fine meshing may lead to poorly condi-
tioned discretization matrices and pose restrictions on certain time-stepping schemes. One alternative is to
treat fractures as lower dimensional boundaries or entities conforming at fracture-matrix interfaces. For

Journal of Geophysical Research: Solid Earth 10.1002/2017JB014892

JIN AND ZOBACK POROMECHANICS OF FRACTURED MEDIA 7627



example, within the framework of the finite element method, Juanes et al. (2002) proposed a hypersurface
element technique for global-to-local mapping of the integration over lower dimensional fractures. A
so-called interface element method has also been developed, which discretizes a zero-thickness fracture into
double- or triple-layer nodes, and is designed specifically for hydraulic strong discontinuities (Cerfontaine
et al., 2015; Segura & Carol, 2008a, 2008b). Sometimes a hybrid-dimensional representation also requires
the averaging of conservation and constitutive laws across fractures (Martin et al., 2005). The second issue
lies in mesh conformity, as is typically required by a hybrid-dimensional approach. In the case of a
conductive fracture and hence continuous pressure across it, mesh conformity is desirable for convenience
in enforcing pressure continuity, although a nonconforming mesh can also be used (Tunc et al., 2012).
Conforming mesh generation can be a nontrivial problem in itself. For example, a Delaunay triangulation
generally does not guarantee a high-quality fracture-conforming mesh, and recovery of the fracture geome-
try may lead to violation of certain important rules (Mustapha, 2014). Also, fractures displaying penalizing
connection configurations can pose significant difficulties in meshing due to small angles and close points
(Erhel et al., 2009). The third issue is that a complex DFN geometry generally requires unstructured discreti-
zation. Numerical solutions using the finite difference method or the finite volume method have been
shown to be successful on unstructured grids (M. Karimi-Fard et al., 2003; Reichenberger et al., 2006).
When coupled to solid mechanics problems, however, a common practice is to use the finite element
method, which typically introduces a different set of mesh, to solve for the deformation, strain, and stress.
The mapping of solutions between two sets of mesh can be computationally costly and lead to excessive
numerical smearing and slow convergence (Sandve et al., 2014). All the above issues should be carefully
addressed before proceeding to seek for numerical solutions.

The aforementioned studies investigate extensively either the fluid problem only in a fractured porous
medium or the fluid-solid coupled poroelastic problem in a fracture-free porous medium. The challenges
associated with fractures, as summarized above, render the fully coupled poroelastic model of arbitrarily frac-
tured media difficult to build and the solution difficult to find. To our best knowledge, there seems no avail-
able analytical solution to a fully coupled poroelastic problem in a medium embedded even with a single
fracture. Numerical solutions do exist. For example, by treating fractures as equal-dimensional entities, one
can utilize existing tools to solve the fully coupled equations (e.g., Chang & Segall, 2016). This approach effec-
tively models fractures as a “porous” domain similar to the surrounding medium and do not account for a
separate fluid constitutive law within fractures. Other numerical solutions have been proposed which take
into account the constitutive behavior of the fluid but not the solid within the fracture (Garipov et al.,
2016; Vinci et al., 2014). Another solution based on a so-called “numerical manifold method” is obtained
but requires simplification of a fracture network into a few dominant fractures (Hu et al., 2017). Finally, we also
mention a class of model that pairs the classic DPDP model of the fluid with a modified solid model based on
a so-called double effective stress law, and the numerical solution is obtained through an equal-dimensional
finite element discretization (Elsworth & Bai, 1992; Gelet et al., 2012; Khalili & Selvadurai, 2003; Salimzadeh &
Khalili, 2015). This model, however, does require domain separation, interaction, and regularization as inher-
ently required by its DPDP part.

In this paper, we first establish a fluid-solid fully coupled model of a poroelastic DFN-matrix system. The DFN
we consider is of an arbitrary distribution. To circumvent the complications associated with the aforemen-
tioned DPDP-based model, we instead retain the classic framework of Biot poroelasticity and formulate the
coupled problem over an integrated fracture-matrix domain. This involves not only the redefinition of
relevant quantities but also the addition of a separate set of fluid and solid constitutive laws for the fractures.
In the fluid problem, we consider highly conductive fractures that behave as hydraulic weak discontinuities.
The mass exchange between fractures and the matrix is accounted for by admitting the jump in the normal
flow velocity (fluid flux) across fractures. Local mass conservation is also enforced across fractures that are
fully immersed within the matrix. We also include nonlinearity arising from pressure-dependent permeability
of fractures in the model. In the solid problem, we focus on the state prior to mechanical failure only.
Nonetheless, each fracture is considered as a finite-thickness shear deformation zone, which can lead to high
degree of heterogeneity in the strain and stress. We then provide a complete hybrid-dimensional computa-
tional approach for solving the proposed nonlinear model in a fully coupled, fully implicit manner. Along the
way, we demonstrate how the effect of fractures is systematically reflected in the final fully discrete form of
the coupled equations.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB014892

JIN AND ZOBACK POROMECHANICS OF FRACTURED MEDIA 7628



The organization of the paper is as follows. In section 2, we introduce some important assumptions pertain-
ing to fractures, define two model domains, and examine the fluid mass conservation law, the solid force
balance law, and the two sets of fluid and solid constitutive laws for both the matrix and fractures.
Boundary and interface conditions are also presented to close the system. Section 3 presents the weak for-
mulation of the coupled problem. We show that hybrid-dimensionality can be achieved based on a transver-
sal uniformity assumption across fractures. In section 4, we discretize the fully coupled equations in space and
time. In particular, we introduce a hybrid-dimensional, equal-order, two-field mixed finite element method
for space discretization. The linearization scheme is provided in section 5, and a numerical example demon-
strating the application of the computational model is provided in section 6. Finally, a summary and some
conclusions are presented in section 7.

2. Mathematical Model
2.1. Representation of a Discrete Fracture-Matrix System

To facilitate the model setup, we first introduce the hydraulic and mechanical representations of a fractured
porous medium. Consider a 2-D physical domain composed of a fracture embedded within a porous matrix
in x (see Figure 1a). We define a fracture as a pair of irregularly shaped surfaces spanning length l along τ. For
the fluid problem (Figure 1b), we assume that due to the complex surface roughness, there is always open
space for fluid flow; thus, the fracture is hydraulically open and can be simplified into a pair of parallel plates
with an effective hydraulic aperture bH along n. For the solid problem (Figure 1c), we assume that the two
fracture surfaces are mechanically in contact and interlocked through asperities and morphological irregu-
larities, such that even prior to failure, the fracture effectively acts as a deformation zone with separate com-
pliance and can be simplified into a mechanical layer of thickness bM. Consideration of such a “fracture
zone” has been shown to be important in a general model (Hu et al., 2017). In terms of application, for exam-
ple, it can play a protective role and reduce the potential for induced seismicity (Rohmer et al., 2015). Within
the matrix, 2-D linear fluid flow and 2-D linear elasticity are assumed. Within the fracture, because of its
exceedingly high tangential-to-transversal aspect ratio (bH , bM≪ l), we consider only tangential fluid flow
and transverse simple shear (defined in section 2.4), which are assumed uniform across bH and bM, respec-
tively. The bM is assumed independent from bH. In addition, the fluid conduction within the fracture is
considered as nonlinear.

2.2. Computational Domain and Asymptotic Domain

We now construct a DFN-matrix system in x by defining a 2-D computational domainΩ ⊂ℝ2 bounded by ∂Ω
with an outward normaln (see Figure 2a). TheΩ consists of a porousmatrix domainΩm and a DFN domainΩf.

Ωm , Ωf ⊂ℝ
2, andΩm ∪Ωf=Ω. TheΩm andΩf are bounded by their respective boundaries ∂Ωm and ∂Ωf. The

Ωf is embeddedwithinΩm but is allowed to intersect with ∂Ω. Consider also that the DFN contains an arbitrary
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Figure 1. A discrete fracture-matrix system. (a) The physical domain consisting of a porous matrix and a fracture. (b) The
fracture is hydraulically open with an aperture bH. (c) Prior to failure, the fracture acts as a deformation zone sandwiched
between the matrix and has a thickness bM.
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set of fully or partially interconnected fractures such that Ωf ¼ ⋃nfi¼1Ωfi , where nf is the number of
discrete fractures, i is the fracture index, and Ωfi denotes the domain occupied by the ith fracture
bounded by ∂Ωfi. The Ωfi is quadrilateral for computational purposes, with a length li along τf i and an
aperture/thickness bi along nf i , bi≪ li. Here b refers to both bH and bM. Along τf i , the midline is denoted

as ∂fi and the two parallel edges are denoted as ∂fþi and ∂f�i , with outward unit normal vectors denoted

as nþ
f i
and n�

f i
. Counterclockwise, the angle between the x axis and ∂fi is denoted as θi. We define nfi∶

¼ n�
fi ¼ �nþ

fi ¼ � sinθi; cosθið ÞT .
Given that bi≪ li, we also define an asymptotic domain Ωasy ⊂ℝ2 (see Figure 2b), in which we let bi be van-

ishingly thin, such that Ωasy
fi →∂f i , and the DFN reduces to a lower dimensional manifold ∂f ¼ ⋃nfi¼1∂fi

embedded within Ωm. In Ωasy, Ωm=Ωasy, ∂Ω is the external boundary, and ∂fþi , ∂f
�
i , (i = 1 ~ nf) are con-

sidered as the internal discontinuities.

We have assumed (section 2.1) that the tangential fluid flux and the simple shear strain are uniform within
each fracture. In order to establish a relationship between Ω and Ωasy and facilitate a hybrid-dimensional
approach, we also make the same assumption about their virtual counterparts, such that ∀i ∈ [1, nf]:

∬Ωf i

f ∇TF;∇PUð ÞdΩ ¼ bHi∫∂f i f ∇τTF;∇τPUð ÞdΓ

∬Ωf i

f ∇TF;∇PUð ÞdΩ ¼ bMi∫∂f i f ∇nTFτfi ;∇nPUτf i

� �
dΓ

(1)

where TF, PU and TF, PU are the test functions and the primary unknowns for the fluid problem and the solid
problem, respectively. For the fluid problem, we refer to Karimi-Fard & Firoozabadi (2003) for a similar

assumption. In this manner, bi need not be explicitly resolved during
meshing, rather, can be implicitly accounted for during computation.
Also, we neglect herein the area occupied by fracture intersections
and adopt the following approximation of the integration over Ωf

during computation:

∫Ωf
�ð ÞdΩ ¼

X
i
∫Ωf i

�ð ÞdΩ (2)

The external boundary ∂Ω is partitioned into ∂Ωp and ∂Ωv for the
fluid problem and ∂Ωu and ∂Ωt for the solid problem. Here ∂Ωp

and ∂Ωu are Dirichlet boundaries, and ∂Ωv and ∂Ωt are Neumann

boundaries. As usual, ∂Ωp ∩ ∂Ωv=∅, ∂Ωp ∪ ∂Ωv ¼ ∂Ω; ∂Ωu ∩ ∂Ωt=∅,

∂Ωu∪ ∂Ωt ¼ ∂Ω; and ∂Ωp≠∅, ∂Ωu≠∅. Here ∅ denotes a null-space.
All domains depend on a time interval of interest (0, T ).

(a) (b)

Figure 2. A DFN-matrix system. (a) The computational domain Ω in which the fracture aperture and thickness are
accounted for (b) the asymptotic domain Ωasy in which the fracture is vanishingly thin. The coupled conservation laws
are formulated and discretized in Ωasy, but the fluid and solid constitutive laws are implemented in Ω in order to account
for fracture aperture and thickness.

Figure 3. Schematic illustration on intrinsic porosities of the matrix and the frac-
ture, which are used to define partial porosities over an amalgamated volume.
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2.3. The Transient Fluid Problem With Solid-to-Fluid Coupling

Consider an arbitrary, heterogeneous, and anisotropic control volume V x ; t
� �

on Ω× (0, T ); see Figure 3.

We denote its mutually exclusive matrix and fracture volumetric portions as Vm x ; t
� �

and Vf x ; t
� �

and further

denote the pore space within Vm x ; t
� �

and Vf x ; t
� �

as Vϕ
m x ; t
� �

and Vϕ
f x ; t
� �

, respectively.

We define and distinguish the following two sets of porosities

ϕm x; tð Þ ≔
Vϕ
m x; tð Þ

Vm x; tð Þ

ϕf x; tð Þ ≔
Vϕ
f x; tð Þ
Vf x; tð Þ

(3)

Φm x; tð Þ ≔
Vϕ
m x; tð Þ
V x; tð Þ ¼ Vm x; tð Þ

Vm x; tð Þ þ Vf x; tð Þ ϕm x; tð Þ ¼ Λ x; tð Þϕm x; tð Þ

Φf x; tð Þ ≔
Vϕ
f x; tð Þ
V x; tð Þ ¼ Vf x; tð Þ

Vm x; tð Þ þ Vf x; tð Þ ϕf x; tð Þ ¼ 1� Λ x; tð Þð Þϕf x; tð Þ

Φ x; tð Þ ≔
Vϕ
m x; tð Þ þ Vϕ

f x; tð Þ
V x; tð Þ ¼ Φm x; tð Þ þ Φf x; tð Þ

(4)

where, the first set of porosities,ϕm x ; t
� �

andϕf x ; t
� �

, are defined within the matrix domain and the fracture

domain, respectively, whereas the second set of porosities, Φm x ; t
� �

and Φf x ; t
� �

, are defined over an amal-

gamated fracture-matrix domain. The Φ x
� �

is the total porosity of V x
� �

. Herein, we refer to ϕ and Φ as the

intrinsic porosity and the partial porosity. The Λ x
� �

is a locally defined parameter which is dependent on

the supplied matrix-DFN geometric configuration.

Assuming that the medium is fully saturated and taking advantage of the definition of Φ x
� �

, we can write

down the conservation of mass for a transient single-phase fluid over Ω→Ωasy, by recalling the classic state-
ment without the need for separation between Ωm and Ωf:

∂t ρ x; tð Þ Φm x; tð Þ þ Φf x; tð Þ � α∇ � u x; tð Þð Þð Þ þ ∇ � ρ x; tð Þv x; tð Þð Þ ¼ S x; tð Þ in Ω→Ωasy� 0; Tð Þ (5)

where ρ x ; t
� �

is the fluid density; v x ; t
� �

is the flow velocity, which is related to the fluid pressure via fluid

constitutive laws; S x ; t
� �

is the external fluid source/sink; α is the Biot-Willis coefficient; and u x ; t
� �

is the

change in the displacement of the solid skeleton due to the change in the fluid pressure (defined by
equation (6)). We note that, here, the fluid problem is formulated over an integrated matrix-fracture
domain; the mass exchange between Ωm and Ωf, as will be shown later, is included in the divergence term.
This differs from the classical dual-porosity double-permeability (DPDP) model (see Appendix A.1), in which
two mass conservation laws are separately formulated over Ωm and Ωf and the two interact through a com-
monmass exchange term; additionally, in the DPDPmodel, the porosity is equivalent to the intrinsic porosity

described in equation (3), and the shape factor is the counterpart of Λ x
� �

, which is geometry-dependent.

However, it is worth noting that here no upscaling is required for calculating Λ x
� �

(see Appendix A.3).

In equation (5), the solid-to-fluid coupling effect is given by the coupling term �α ∇ ∙ u x ; t
� �

, which

quantifies the change in the porosity (see Appendix A.2 for details). Here ∇ ∙ u x ; t
� �

is the volumetric

strain, which follows a compressive strain positive notation in order to be consistent with the solid pro-
blem (section 2.4). Positive volumetric strain correlates with a reduction (negative change) in the porosity,
therefore notice the negative sign in front of the coupling term. This is slightly different from a commonly
used formulation that follows an extensional strain positive notation, in which case the coupling term
becomes positive.

The goal is to solve for the change in the fluid pressure, p x ; t
� �

, defined as

p x; tð Þ ≔ p1 x; tð Þ � p0 xð Þ (6)

wherep0 x
� �

is the initial fluid pressure andp1 x ; t
� �

is the new fluid pressure after perturbation. For brevity, we

herein refer to p x ; t
� �

simply as the fluid pressure.
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Denote the compressibility of the fluid, the matrix pore, and the fracture as Cρ, Cm, and Cf. They are defined as
the following:

Cρ ≔
1
ρ0

d ρ
dp

Cm ≔
1

Φm0

dΦm

dp

Cf ≔
1
Φf0

dΦf

dp

(7)

where ρ0 is the initial fluid density andΦm0 x
� �

andΦf0 x
� �

are the initial partial porosities of the matrix and
the fracture, respectively.

Consulting equation (4), and letting Λ x ; 0
� � ¼ Λ0 x

� �
, ϕm0 x ; 0

� � ¼ ϕm0 x
� �

, and ϕf0 x ; 0
� � ¼ ϕf0 x

� �
,

one finds

Φm0 xð Þ ¼ Λ0 xð Þϕm0 xð Þ
Φf0 xð Þ ¼ 1� Λ0 xð Þð Þϕf0 xð Þ (8)

Here Λ0 x
� �

can be calculated based on the initial matrix-fracture configuration (see Appendix A.3 and

equation (A4)). Furthermore, for the fluid problem, it is common to consider a fracture as a full empty space
(e.g., Garipov et al., 2016; Mustapha, 2014), which is consistent with the fracture hydraulic representation in
section 2.1. In Ω, this reads

ϕf0 xð Þ ≡ 1;∀x ∈Ωf

0;∀x ∈Ω \Ωf ¼ Ωm

�
(9)

The total time derivatives of the density, the partial porosity, and the solid displacement take the following
canonical form:

_ρ x; tð Þ ¼ ∂tρ x; tð Þ þ ∇ρ x; tð Þ � vρ
_Φr x; tð Þ ¼ ∂tΦr x; tð Þ þ ∇Φr x; tð Þ � vs; r ¼ m; f

_u x; tð Þ ¼ ∂tu x; tð Þ þ ∇u x; tð Þ � vs

(10)

where vρ and vs are the velocity of the fluid and the solid skeleton, respectively.

Next, we make the following two approximations:

∇ρ x; tð Þ ≈ 0 (11)

vs x; tð Þ ≈ 0 (12)

Equation (11) is a common underlying assumption made in standard reservoir simulation formulations (e.g.,
Aziz & Settari, 1979) and many coupled formulations (e.g., Castelletto et al., 2015a; Jha & Juanes, 2007). It
allows approximation of the divergence of the fluid flux using the initial fluid density. Equation (12) arises
from an assumption of quasi-static deformation (section 2.4). Equations (11) and (12) therefore allow approx-
imation of the partial time derivatives of relevant variables using their respective total time derivatives shown
in equation (10).

In addition, by definition, the initial change in the volumetric strain due to the fluid pressure is 0:

∇ � u x; 0ð Þ ¼ 0 (13)

Expanding the left-hand side (LHS) of equation (5), substituting in equations (7)–(13), dividing both sides by

ρ0 and writing S x ; t
� �

=ρ0 as s x ; t
� �

yields

Λ0 xð Þϕm0 xð Þ Cm þ Cρ
� �þ 1� Λ0 xð Þð Þϕf0 xð Þ Cf þ Cρ

� �� �
_p x; tð Þ � α∇ � _u x; tð Þ þ ∇ � v x; tð Þ

¼ s x; tð Þ in Ω→Ωasy� 0; Tð Þ (14)

Next, we distinguish two types of fractures: sealing fractures and conductive fractures. Following Martin et al.
(2005), in Ωasy, the former leads to pressure discontinuity (hydraulic strong discontinuity), whereas the latter
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permits flux/velocity discontinuity (hydraulic weak discontinuity) across ∂f. A sealing fracture typically occurs
in the form of a hydraulically inactive fault where the impermeable fault gouge prohibits transversal flow;
this type of fracture is not the focus of this study. Here we focus on conductive fractures only. Specifically,
we assume that the tangential permeability of Ωf is much higher than any component of the permeability
tensor of Ωm. In such cases, it is safe to assume pressure continuity across ∂f in Ωasy. Note that the
pressure is not necessarily differentiable across ∂f. In other words, it is at least C0 continuous (Luege et al.,
2015; Prévost & Sukumar, 2016). Nonetheless, a jump in the fluid normal velocity vn (pressure normal
gradient) and a spike in the fluid tangential velocity vτ (pressure tangential gradient) across a fracture, are
allowed (Meschke & Leonhart, 2015) (see Figure 4). In Ωasy, the above statement is summarized as

jp x; tð Þj½ � ¼ 0; jv x; tð Þj½ � � nf i ≠ 0; ∀x ∈ ∂f i; i ¼ 1 e nf (15)

We now write down the two fluid constitutive laws. In Ωm, v x ; t
� �

is given by the 2-D Darcy’s law:

vm x; tð Þ ¼ �κm xð Þ � ∇pm x; tð Þ ¼ �η�1km xð Þ � ∇pm x; tð Þ ∀x ∈Ωm (16)

where pm x ; t
� �

is the fluid pressure, η is the fluid viscosity, and κm x
� �

and km x
� �

are the heterogeneous and

fully anisotropic hydraulic conductivity and permeability tensors. Without changing the generality of the
method itself, here we consider a simply anisotropic permeability tensor:

km xð Þ ¼ kmx xð Þ 0

0 kmy xð Þ

" #
(17)

In Ωf, it is appropriate to consider the Stokes flow, leading to the so-called Brinkman problem (e.g., Dereims
et al., 2015). Here, however, we neglect the free flow effect and consider only transversally uniform 1-D flow
along the fracture tangential direction (see, e.g., Martin et al., 2005), as described by the 1-D Darcy’s law in a
local reference frame:

vf iτ x; tð Þ ¼ vf i x; tð Þ � τf i ¼ �κf iτ∇τpf i ξ; t
� � ¼ �η�1kf iτ∇τpf i ξ; t

� �
∀x ∈Ωf i ; i ¼ 1 e nf (18)

where pf i x ; t
� � ¼ pf i ξ ; t

� �
is the fluid pressure within the ith fracture, pf i x ; t

� �
⊂ pm x ; t

� � ¼ p x ; t
� �

in Ωasy,

and κf iτ and kf iτ are the fracture tangential conductivity and permeability, respectively. Here kf iτ can be
related to the fracture hydraulic aperture bHi according to the cubic law (Witherspoon et al., 1980), which
reads the following when the surface roughness and tortuosity effects are neglected:

kf iτ ¼
1
12

bHi
2 ; i ¼ 1 e nf (19)

Following Formaggia et al. (2014), strong pressure variations may occur at intersections of fractures with
radically different conductivities. To ensure pressure continuity, here we further assume bHi~ = bHj∀ i ,
j ∈ [1, nf]. This implies that all fractures have similar tangential permeabilities. In the case of an intersection
of fractures with highly contrasting conductivities, a more careful treatment can be applied by adding the
pressure at the intersection of fracture center lines as an additional degree of freedom (Schwenck
et al., 2015).

τ
n xy

( ), ( )m mx xκ k

( ), ( )m mx xκ k

mp
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p fi

mv
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if
v

im f mp p p

i
p
p v

v

Asymptotic domain Computational domain

nv vp
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n

mv

Asymptotic domain
mnv

mv

mnv

Figure 4. Graphic illustration on continuous distribution of the fluid pressure and discontinuous distribution of the flow
velocity across a highly conductive fracture. The asymptotic domain is shown on the left and the computational
domain in the middle. On the right are profiles of the fluid pressure and the normal and tangential components of the flow
velocity in the asymptotic domain. The pressure continuity is naturally enforced via a hybrid-dimensional approach.
Uniform tangential flow velocity within the fracture is assumed.
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In this study, we do not focus on the hydraulic fracturing process; that is, in the solid problem, the displace-
ment across a fracture is continuous and no mechanical strong discontinuity is present. This typically is the
case when the fluid pressure within a fracture is insufficient to overcome the normal stress acting on it,
and therefore, no opening mode failure is present. Nonetheless, in the fluid problem, the hydraulic property
of a fracture is strongly pressure-dependent, and therefore, the flow along the fracture, as described by
equations (18) and (19), is nonlinear. To account for this nonlinearity, we consider the following relationship:

dbH pfð Þ
bH0

¼ dΦf

Φf0
(20)

where bH0 is the initial hydraulic aperture and dbH is the change due to the change in the pressure.

From equation (20) and the third equation in equation (7), the hydraulic aperture thus becomes

bH ¼ bH0 þ dbH ¼ bH0 1þ Cf pfð Þ (21)

The above linear-type dependency of hydraulic aperture on the fluid pressure within a fracture has been
observed in laboratory experiments (e.g., Walsh, 1981). Substitution of equations (18), (19), and (21) into
equation (14) yields a nonlinear equation.

Finally and without losing the generality of our model, we stipulate for now that the external fluid source s is

provided only within Ωm, such that s x ; t
� � ¼ 0∀x ∈Ωf . Changes upon removal of this assumption will be

briefly discussed in section 3.1.

2.4. The Quasi-Static Solid Problem With Fluid-to-Solid Coupling

Throughout the solid problem, we use a compressive stress positive notation. Prior to the fluid pressure
perturbation, the fluid-filled solid is governed by the quasi-static force balance law, which reads

∇ � σ0 ’ xð Þ þ αp0 xð Þ1� �þ f b xð Þ ¼ 0 in Ω→Ωasy (22)

where σ
0
0 x
� �

is the initial effective stress tensor, 1 is the unit identity tensor (Kronecker delta), α is the Biot-

Willis coefficient (see also equation (5)), σ
0
0 x
� �þ αp0 x

� �
1 is the initial Cauchy total stress tensor where the

positive sign arises from the sign convention, and f
b
x
� �

is the body force.

After the fluid pressure perturbation and prior to the occurrence of any dynamic failure, the fluid-filled solid
needs to satisfy the following in order to regain quasi-static equilibrium:

∇ � σ’ x; tð Þ þ αp x; tð Þ1þ σ0 ’ xð Þ þ αp0 xð Þ1� �þ f b xð Þ ¼ 0 in Ω→Ωasy� 0; Tð Þ (23)

where σ
0
x ; t
� �

is the change in the effective stress tensor due to the change in the fluid pressure, p x ; t
� �

,

which is supplied from the fluid problem described in section 2.3. From equations (22) and (23), one finds

that σ
0
x ; t
� �

can be solved from

∇ � σ’ x; tð Þ þ αp x; tð Þ1� � ¼ ∇ � σ’ x; tð Þ þ f p x; tð Þ ¼ 0 in Ω→Ωasy� 0; Tð Þ (24)

Here f p x ; t
� �

is an equivalent body force vector due to the gradient of the fluid pressure:

f p x; tð Þ ¼ α∇p x; tð Þ (25)

Because the (negative) pressure gradient is directly indicative of the flow velocity in the Darcy flow regime, as
is shown by equations (16) and (18), the equivalent body force can thus be discontinuous across a fracture;

furthermore, σ0 x ; t
� �

can be regarded as a flow-driven effective stress tensor due to a fluid-to-solid coupled

poroelastic process, which essentially rests on the principle of effective stress. In the presence of fluid flow

(fluid in motion),σ0 x ; t
� �

must be solved from equations (24) and (25), and one should expect that, in general,

σ0 x ; t
� �

≠� αp x ; t
� �

1. The equal sign can only be drawn when the fluid pressure gradient vanishes (an uni-

form change in the fluid pressure within the medium), in which case the poroelastic process reduces to a

decoupled process. Superimposing σ0 x ; t
� �

onto σ
0
0 x
� �

yields the final effective stress state which can be

used for various analysis accounting for the poroelastic effect.
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We choose u x ; t
� �

(defined in equation (5)) as the primary unknown for the solid problem. The conceptual

model of a fracture is illustrated in Figure 5. First, we restrict our focus on the state prior to occurrence of

mechanical failure on the fracture; therefore, u x ; t
� �

is at least a C0 continuous function across ∂f in Ωasy.

Second, as mentioned in section 2.1, we consider a fracture as a finite-thickness fracture zone with transverse
simple shear behavior in Ω. The presence of this zone allows shear strain concentration within as well as
strain heterogeneity across it. Nonetheless, within the mechanically layered solid, the traction is transferred
continuously everywhere. We therefore enforce the following continuity conditions for the solid:

ju x; tð Þj½ � ¼ 0; jtf i x; tð Þj� � ¼ jσ x; tð Þj½ � � nf i ¼ 0; ∀x ∈ ∂f i; i ¼ 1 e nf (26)

Figure 5 further illustrates a two-step simplification to facilitate a hybrid-dimensional approach. First, the var-
iation of the shear strain within the fracture zone, if any, is neglected, and instead, uniform shear strain is
assumed in Ω. This is done by replacing the smooth tangential displacement profile (yellow) with a discre-
tized nonsmooth counterpart (green), resulting in the strain profile to change from smooth but with a sharp
variation to step function-like. Second, the thickness of the fracture zone is condensed by collapsing point A,
B onto C, and the tangential displacement profile in Ω (green) is further approximated with the one in Ωasy

(blue), causing the corresponding strain profile to become Heaviside function-like.

We now write down the two solid constitutive laws. For Ωm, we adopt the Hooke’s law:

σ’m x; tð Þ ¼ Dm : εm x; tð Þ ¼ Dm : ∇sum x; tð Þ ∀x ∈Ωm (27)

where εm x ; t
� �

and um x ; t
� �

are the poroelastic strain tensor and the displacement within the matrix, ∇s is
the symmetric gradient operator, ∇s(·) = (∇(·) + (∇(·))T)/2, and Dm is the matrix elastic stiffness tensor. Here
we consider a plane strain case, where Dm takes the following form:

Dm ¼ Em
1þ νmð Þ 1� 2νmð Þ

1� νm νm 0

νm 1� νm 0

0 0 1� 2νmð Þ=2

264
375 (28)

where Em and νm are the Young’s modulus and Poisson’s ratio of the porous matrix.

Within the fracture zone Ωf, we adopt the following linear shear constitutive law described in a local refer-
ence frame. Following the standard convention, we denote the poroelastic shear stress as σ0nτ to show its
sense. For the ith fracture, σ0nτ reads

σ’nf i τf i ξ; t
� � ¼ Gf iτγf i ξ; t

� �
∀ξ ∈Ωf i ; i ¼ 1 e nf (29)

where Gf iτ is the shear modulus of the fracture zone and γf i ξ ; t
� �

is the poroelastic shear strain, which is

assumed to be transversally uniform, hence the name “transverse simple shear.” It is defined as

γf i ξ; t
� �

≔
∂uf iτ ξ; t

� �
∂nf i

¼ ∇nuf iτ ξ; t
� �

(30)

where uf iτ ξ ; t
� �

is the tangential displacement related to uf i
x ; t
� �

via a simple projection (section 4.2)

and uf i
x ; t
� �

⊂ um x ; t
� � ¼ u x ; t

� �
in Ωasy.
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Figure 5. Graphic illustration on a fracture as a finite-thickness mechanical zone with transverse simple shear behavior. The strain distribution is shown on the right,
the displacement profile is shown in the middle along with the computational domain, and the asymptotic domain is shown on the left. The color of each profile is
indicated on the upper right. Continuity in traction and displacement is enforced. A two-step simplification ismade to enable the hybrid-dimensional approach, see text.
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Consideration of transverse simple shear of a fracture can be found in
other studies (e.g., Castelletto et al., 2017).

2.5. Boundary, Interface, and Initial Conditions

We wish to model changes in field variables under homogeneous
boundary conditions. InΩasy, standard Dirchlet and Neumann bound-
ary conditions are prescribed on ∂Ω for both the fluid problem and
the solid problem (see, e.g., Meschke & Leonhart, 2015):

p xð Þ ¼ pg ∀x ∈ ∂Ωp (31)

�n � v xð Þ ¼ vh ∀x ∈ ∂Ωv (32)

u xð Þ ¼ ug ∀x ∈ ∂Ωu (33)

n � σ xð Þ ¼ th xð Þ ∀x ∈ ∂Ωt (34)

To close the boundary value problem, the above boundary conditions
must be augmented by their counterparts on the internal discontinu-
ity ∂f. In principal, ∂f can also be partitioned into Dirichlet and
Neumann types. However, usually, Neumann conditions alone are suf-

ficient to account for (1) the mass exchange between Ωf and Ωm through fluid flux in the fluid problem and
(2) either a traction-free condition or a continuous traction condition across ∂f in the solid problem.

In the fluid problem, we assume that no inflow is injected into and no outflow is extracted from any frac-
ture at a known rate; thus, the counterpart of equation (32) can be omitted. On the other hand, certain
matrix-fracture interface conditions ought to be met. To examine these conditions, we first divide the frac-
tures in this study (conductive fractures as opposed to sealing fractures) into two groups: fully immersed

fractures (type I) and partially immersed fractures (type II), denoted as ∂f I and ∂f II, respectively. Here ∂f I ¼
⋃nfIj¼1∂f

I
i , ∂f

II ¼ ⋃nfIIk¼1∂f
II
j , where nfI and nfII are the numbers of the two types of fractures. The ∂f I does not

intersect the external boundary ∂Ω upon which equations (31)–(34) are imposed, nor the area where
the source/sink term is specified (see also section 2.3), whereas ∂f II implies otherwise; see Figure 6.

On ∂f I, the tangentially diffusing fluid originates only from the matrix; thus, the following velocity interface
condition, which accounts for the matrix-to-fracture mass transfer, is required (see, e.g., Angot et al., 2009;
Antonietti et al., 2015; Faille et al., 2016; Martin et al., 2005):

� jv x; tð Þj½ � � nf j ¼ ∇τ � vf j x; tð ÞbHj
� �

; ∀x ∈ ∂f Ij; j ¼ 1 e nfI (35)

where ∇τ∙ is the tangential divergence operator.

Integrating equation (35) over ∂f Ij, recognizing the tangentially invariant bHj, and applying Gauss theorem on

the right-hand side (RHS) lead to the recovery of the local mass balance, which reads

�∫∂f Ij jv x; tð Þj½ � � nf j dΓ ¼ ∫Ωf j

∇τ � vf j x; tð ÞdΩ ¼ ∫∂f Ij vf j x; tð Þ � τf j dΓ ¼ ∫∂f Ij vf jτ x; tð ÞdΓ (36)

Because the permeability on ∂f II is orders of magnitude higher than that of the surrounding matrix, frac-
tures act as preferred flow paths. These paths are associated with much shorter characteristic diffusion

times, such that the next fracture ∂f IIkþ1 always draws source fluid from the previous fracture ∂f IIk connected
to it (see Figure 6) rather than from the immediately surrounding matrix. In such cases, a fracture-to-matrix

mass transfer is appropriate. It can be represented by the normal velocity jump, 〚v x ; t
� �

〛 ∙ n which is inde-

pendent from the remaining flow v
f
x ; t
� �

along the fracture. No interface condition is required.

We note that boundary conditions at fracture-fracture intersections (e.g., Pouya, 2012) and fracture-external
boundary intersections (e.g., Antonietti et al., 2015) are not considered. The viscous drag is also neglected,
and the so-called Beavers-Joseph interface condition (Beavers & Joseph, 1967) is not included.

For the solid problem, the fractures are in contact. Thus, traction continuity is a required interface condition,
as is given in equation (26).

Type I, fully immersed

s
*

Type II, partially immersed

f

nf
xy

(matrix-to-fracture mass transfer)

(fracture-to-matrix mass transfer)

v

v

v

Figure 6. Schematic illustration on two types of conductive fractures. A type II
fracture ∂f I is connected to either the fluid source s or the boundary ∂Ω, and it
acts as a preferred flow path, supplying fluid to the surrounding matrix and
resulting in a fracture-to-matrix mass transfer. In contrast, a type I fracture ∂f II is
completely immersed within the matrix and can only draw fluid from the sur-
rounding, resulting in a matrix-to-fracture mass transfer.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB014892

JIN AND ZOBACK POROMECHANICS OF FRACTURED MEDIA 7636



Finally, the initial conditions for the coupled system read

p x; 0ð Þ ¼ 0 ∀x ∈Ω \ ∂Ωp (37)

u x; 0ð Þ ¼ 0 ∀x ∈Ω \ ∂Ωu (38)

3. Weak Formulation: A Hybrid-Dimensional Approach

The weak formulations of the conservation law (equation (14)) and the balance law (equation (24)) can be
obtained following standard procedures (see, e.g., Hughes, 2012), except that here we adopt a hybrid-
dimensional representation of the DFN-matrix system and integrate directly over Ωasy rather than Ω. Since
fractures are considered as internal boundaries of lower dimensions in Ωasy, we invoke the extended diver-

gence theorem to push the volume integral onto ∂Ω as well as ∂fþi and ∂f�i (i ∈ [1, nf]) (Figure 2b). This will
allow us to account for weak discontinuities across fractures, if any exist. As mentioned in section 2.2, the fluid
and solid constitutive laws for both the matrix domain Ωm and the fracture domain Ωfi will be implemented
in Ω (Figure 2a). Specifically, this means that when the gradients of the primary unknowns appear indepen-
dently, we can decompose the volume integration over Ωasy→Ω into the summation of two integrations
over Ωm and Ωf. Further, the two assumptions stated by equations (1) and (2) will allow a reduction from a
volume integration over Ωfi into a surface integration along ∂fi. The complete weak formulations will consist
of a 2-D integration over Ωasy and 1-D integration over ∂fi. Meanwhile, bHi and bMi in equation (1) ensure

dimensional consistency. For brevity, we omit writing x ; t
� �

and (t) following relevant space- and time-

dependent variables in this section.

3.1. The Fluid Problem With Solid-to-Fluid Coupling

Let a scalar quantity w ∈ {w :Ω→ℝ2|w ∈H1,w=0 on ∂Ωp}. Here H1 is a Sobolev space of degree one.
Multiplying equation (14) by w, integrating overΩasy, and performing integration by parts on the divergence
term on LHS lead to the following:

∬ΩasywΛ0ϕm0 Cm þ Cρ
� �

_pdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

þ∬Ωasyw 1� Λ0ð Þϕf0 Cf þ Cρ
� �

_pdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ωm∪ Ωf¼Ω ← Ωasy

�∬Ωasywα ∇ � _uð ÞdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

þ∬Ωasy∇ � wvð ÞdΩ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

�∬Ωasy∇w � vdΩ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ωm∪ Ωf¼Ω ← Ωasy

¼ ∬Ωasywsd Ω|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

(39)

The second term on the LHS is fracture-related and is expanded in Ω. Considering equation (9) and subse-
quently equation (2), one finds

∬Ωasy → Ω
w 1� Λ0ð Þϕf0Cf _pdΩ

¼ ∬Ωm
w 1� Λ0ð Þϕf0Cf _pdΩþ∬Ωf

w 1� Λ0ð Þϕf0Cf _pdΩ

¼P
i∈nf
∫∂f i w 1� Λ0ð Þϕf i0Cf i _pbidΓ

(40)

Here one underlying requirement is that Λ0 x
� �

is transversely uniform. As will be shown in section 4, this

requirement can be effectively met as Λ0 x
� �

is constant element-wise.

The fourth term on the LHS of equation (39) can be calculated by invoking the extended divergence theorem
to admit the normal discontinuity in fluid flux across each fracture (see, e.g., Armero & Callari, 1999; Pouya,
2015; Prévost & Sukumar, 2016). Here we further distinguish between fully immersed and partially immersed
fractures:

∬Ωasy∇ � wvð ÞdΩ ¼ ∫∂Ωwv � ndΓ�
X
j∈nfI

∫∂f Ij w jvj
h i

� nf j dΓ�
X
k∈nfII

∫∂f IIkw jvj
h i

� nfk dΓ (41)

where the first normal velocity jump, which represents thematrix-to-fracture mass transfer on fully immersed
fractures, is linked to the interface condition presented in equation (36). The second normal velocity jump
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represents the fracture-to-matrix mass transfer on partially immersed fractures and can be rewritten as the
following (Noetinger, 2015; Noetinger & Jarrige, 2012):

jvj
h i

� nfk ¼ � jκm � ∇pmj½ � � nfk ∂f IIk




 ¼ � jκm � ∇pj½ � � nf k ∂f IIk




 (42)

In the fifth term on the LHS of equation (39), v , which calls for the two sets of fluid constitutive laws, appears

independently within the integral. We expand it in Ω, honor equation (2) and then equation (1), and substi-
tute in equations (16) and (18):

∬Ωasy → Ω
∇w � v dΩ ¼ ∬Ωm

∇w � vmdΩþ∬Ωf
∇w � vf dΩ

¼ �∬Ωm
∇w � κm � ∇pdΩ�

X
i∈nf

bHi∫∂f i∇τw � κf iτ∇τpdΓ (43)

Finally, since we have assumed that the external fluid source is provided only within the matrix domain, the
integration on the RHS of equation (39) can be completed over Ωasy without expansion in Ω. Relaxation of
this assumption will then require a similar decomposition process described above. In this case, one would
then need to specify a separate source/sink term for the fractures.

Substituting equations (40)–(43) into equation (39), noticing the Neumann boundary condition equation (32)
and the interface condition equation (36), and noticing Ωasy =Ωm, we obtain the final weak formulation of
the fluid problem:

∬Ωm
wΛ0ϕm0 Cm þ Cρ

� �
_pdΩþ

X
i∈nf

bHi∫∂f iw 1� Λ0ð Þϕf i0 Cf i þ Cρ
� �

_pdΓ

�∬Ωm
wα ∇ � _uð ÞdΩ

þ∬Ωm
∇w � κm � ∇pdΩþ

X
i∈nf

bHi∫∂f i∇τw � κf iτ∇τpdΓ

�
X
j∈nfI

∫∂f Ijwκf jτ∇τpdΓþ
X
k∈nfII

∫∂f IIkw jκm � ∇pj½ � � nfk dΓ

¼ ∫∂Ωv
wvhdΓþ∬Ωm

wsdΩ

(44)

3.2. The Solid Problem With Fluid-to-Solid Coupling

Let a vector quantity η ∈ η : Ω→ℝ2jη ∈H1; η ¼ 0 on ∂Ωu

n o
. Again, H1 is a Sobolev space of degree one.

Similarly, multiplying equation (24) with η , integrating over Ωasy, and performing integration by part, on

one side, decomposing the total stress into the sum of the effective stress and the pore pressure, we have
(here we use symbolic notation and indicial notation interchangeably)

∬Ωasyηl;kσ’kldΩ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ωm ∪ Ωf¼Ω ← Ωasy

þ∬Ωasyηl;kαpδkldΩ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

¼ ∬Ωasy ηlσklð Þ;kdΩ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω ← Ωasy¼Ωm

(45)

For the first term on the LHS, because σ0kl calls for the two sets of solid constitutive laws, we decompose the
integration into the summation of two integrations over Ωm and Ωf. In Ωm, we explore the symmetry of the
effective stress tensor; in Ωf, we honor equation (2) and then equation (1) (both the shear stress and the vir-
tual shear strain are transversally uniform within fractures). Subsequently, we substitute in equations (27) and
(29). Adopting the Voigt notation leads to

∬Ωasy → Ω
ηl;kσ’kldΩ

¼ ∬Ωm
ηl;kσ’kldΩþ∬Ωf

ηl;kσ’kldΩ

¼ ∬Ωm
η k;lð Þσ’kldΩþP

i∈nf

bMi∫∂f iητf i ;nf i σ’nf i τf i dΓ

¼ ∬Ωm
∇sη
n oT

Dm ∇suf gdΩþP
i∈nf

bMi∫∂f i∇nητf i Gf iτ∇nuf iτdΓ

(46)
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On the RHS, we apply the extended divergence theorem, which
leads to

∬Ωasy ηlσklð Þ;kdΩ

¼ ∫∂ΩηlσklnkdΓþP
i∈nf

∫∂fþi ηlσ
þ
kl n

þ
f i k
dΓþ ∫∂f�i ηlσ

�
kl n

�
f i k
dΓ

� �
¼ ∫∂Ωη � σ � ndΓ�P

i∈nf
∫∂f iη � jσj½ � � nf i dΓ

(47)

Substituting equations (46) and (47) into equation (45), exploring
symmetry in the remaining term (second term on the LHS of equa-
tion (45)), taking into account the traction continuity condition stated
in equation (26) and the traction boundary condition equation (34)
and recognizing that Ωasy =Ωm, we arrive at the final weak formula-
tion of the solid problem written in vector form

∬Ωm
∇sη
n oT

Dm ∇suf gdΩþ
X
i∈nf

bMi∫∂f i∇nητf i Gf iτ∇nuf iτdΓ

þ∬Ωm
∇sη
n oT

1apdΩ ¼ ∫∂Ωt
ηT thdΓ

(48)

where ητ and uf iτ are the projection of η and uf i
on the fracture tangential direction, and 1 ¼ 1 1 0½ �T is the

Kronecker delta in vector form.

The LHS of equation (48) includes two additional terms that do not appear in the classic weak form of the
force balance equation: the second term accounts for the fracture zone constitutive behavior, and the third
term accounts for the poroelastic effect.

4. Discretization
4.1. Space Discretization and Hybrid Elements

Recall that pf i x ; t
� �

⊂ pm x ; t
� � ¼ p x ; t

� �
and uf i

x ; t
� �

⊂ um x ; t
� � ¼ u x ; t

� �
inΩasy. Accordingly, we spatially dis-

cretize Ωasy into a set of linear elements such that each lower dimensional linear fracture ∂fi (i = 1 ~ nf) tan-
gentially conforms to the edges of a subset of these elements (see Figure 7). Denote the matrix node set as
Χm and fracture node set as Χf, then Χf ⊂Χm. Fracture nodes thus hold no additional degrees of freedom but
share values with matrix nodes, which ensures the continuity of pressure and displacements. The elements
that fractures conform to are referred to as “hybrid elements” in this study. They contain at least two fracture
nodes from the same fracture and constitute a hybrid domainΩH,ΩH ⊂Ωasy.TheΩH associated with ∂fiwill be
refered to asΩHi , which is composed ofΩHiþ on the positive side andΩHi� on the negative side. Suppose ∂fi
lies on the line ℓi x

� � ¼ ax � y þ c ¼ 0. ℓi x
� �

> 0∀x ∈ΩHiþ; ℓi x
� �

< 0∀x ∈ΩHi�.

We have chosen the fluid pressure p and the solid displacement u as the primary unknowns. For a hybrid

element conforming to ∂fi, we denote the nodal pressure as ζ̂Hm and ζ̂Hf i and the nodal displacements as dH
m

and dH
f i
. ζ̂Hf i ⊂ ζ̂

H
m , d

H
f i
⊂ dH

m
. We then define two “dimensional transformation matrices” associated with ∂fi,

Qf i and Lf i , for the fluid problem and the solid problem, respectively, such that

ζ̂ Hf i ¼ Qf i ζ̂
H
m

dHf i ¼ Lf i d
H

m

(49)

Here Q and L are composed of 0 and 1, and Qf iQ
T
f i ¼ 1, Lf iL

T
f i ¼ 1.

Hybrid element, conforming to one fracture

Hybrid element, conforming to more than one fracture

Non-hybrid element

Figure 7. Schematic illustration on the discretized model domain. Fractures are
discretized as lower dimensional elements tangentially conforming to matrix
elements. Any matrix element containing at least one fracture element is a hybrid
element, and the rest are nonhybrid elements.
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For example, for a linear triangular element, ζ̂Hm ¼ ζHm1; ζ
H
m2; ζ

H
m3

� �T
,

and dH
m ¼ dHm1x; d

H
m1y ; d

H
m2x; d

H
m2y ; d

H
m3x; d

H
m3y

� �T
. Accordingly, the

element-wise Qf i and Lf i take the following different forms, depend-
ing on the local node number of the matrix element me in relation
to the fracture line elements f ei (see Table 1):

We denote the shape functions associated with me and the conform-
ing f ei as Nm and Nf iτ

for the fluid problem, and as Nm and Nf iτ for the

solid problem. Nm and Nm are defined in x , while Nf iτ
and Nf iτ are

defined along the fracture tangential direction τf i . They take the
following forms:

Nm ¼ Nm1 xð Þ;Nm2 xð Þ;Nm3 xð Þð Þ (50)

Nf iτ ¼ Nf iτ1;Nf iτ2ð Þ (51)

Nm ¼ Nm1 xð Þ
0

0

Nm1 xð Þ
Nm2 xð Þ

0

0 Nm3 xð Þ 0

Nm2 xð Þ 0 Nm3 xð Þ

24 35
(52)

Nf iτ ¼
Nf iτ1

0

0

Nf iτ1

Nf iτ2

0

0

Nf iτ2

" #
(53)

For linear 2-D and 1-D elements, one can verify the validity of the fol-
lowing relationships, which will soon prove useful:

Nmj∂f i ¼ Nf iτQf i ; or ∫∂f i NT
m �ð ÞdΓ ¼ ∫∂f iQT

f i N
T
f iτ �ð ÞdΓ (54)

Nmj∂f i ¼ Nf iτLf i ; or ∫∂f iNT
m �ð ÞdΓ ¼ ∫∂f iLTf iNT

f iτ �ð ÞdΓ (55)

4.2. Hybrid-Dimensional, Equal-Order, Mixed Finite Element Interpolation

Similar to what is commonly used in a fracture-free coupled poromechanical problem, here, we adopt the
classical two-field mixed finite element method, in which the two coupled primary unknowns, p and u ,

are interpolated over the same finite element (e.g., Korsawe et al., 2006; White & Borja, 2011).
Furthermore, it is well known that for a drained coupled system, as is the focus of this study, the equal-
low-order interpolation pair well satisfies the so-called inf-sup constraint, known also as the Ladyženskaja-
Babuška-Brezzi condition, and therefore, no instability in the fluid pressure field will arise (e.g., Choo &
Borja, 2015). This enables us to utilize the same discrete space for interpolation. However, in contrast to a
standard equal-dimensional interpolation scheme, here, the hybrid element described in section 4.1 natu-
rally calls for hybrid-dimensional interpolation of the primary unknowns. Specifically, in fracture-related
terms, p and u will be interpolated in 1-D using fracture nodes only, whereas in other terms, they will be

interpolated in 2-D using matrix nodes. Meanwhile, the two test functions will always be interpolated in
2-D using matrix nodes for maintaining consistency on both sides of the equation. This will lead to a mis-
match in the size of the resulting matrix form; however, this mismatch can be reconciled using the dimen-
sional transformation matrices defined above together with equations (54) and (55). This ensures that the
same primary unknown vector will be gathered from all terms on the LHS, and the same arbitrary vector will
be canceled on both sides. For a nonhybrid element, standard 2-D interpolation is employed. For brevity, we
will not distinguish between hybrid and nonhybrid elements and will omit writing the superscript “H,” e.g.,

ζ̂Hm as ζ̂m. In addition, a subscript “g” will be used to indicate a quantity associated with an element in contact
with or a node on the Dirichlet boundary. We note that prior to interpolation, hybrid elements associated
with ∂fi (i = 1 ~ nf) can be identified. The details of the interpolation are given below.

Table 1
Example of Element-Wise Dimensional Transformation Matrices for Linear
Triangular Hybrid Elements

Local node number in a
hybrid element Qfi Lfi

1

0

0

1

0

0

" # 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

26664
37775

1

0

0

0

0

1

" # 1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26664
37775

0

0

1

0

0

1

" # 0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26664
37775
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4.2.1. The Fluid Problem With Solid-to-Fluid Coupling
The interpolation of the fluid pressure and its local time derivative is hybrid-dimensional. Employing the
Galerkin approximation on the fluid Dirichlet boundary, we have

p ≈ Nmζ̂m þ Ngζ̂ g; _p ≈ Nm
_̂ζm þ Ng

_̂ζ g ∀x ∈Ωm (56)

p ≈ Nf iτ ζ̂ f i ¼ Nf iτQf i ζ̂m; _p ≈ Nf iτ
_̂ζ f i ¼ Nf iτQf i

_̂ζm ∀x ∈ ∂f i (57)

Taking advantage of the constant element-wise fluid flux associated with linear elements, the flow velocity
discontinuity in equation (42) can be interpolated as

� jκm∇pmj½ � ≈ � κþm∇N
þ
mζ̂m

þ � κ�m∇N
�
mζ̂m

�� �
∀x ∈ΩHi (58)

Because fractures act as sources only for shear deformation and the volumetric deformation is only due to the
matrix, it is therefore adequate to interpolate the volumetric strain rate of the medium simply using the
matrix nodes. Here we adopt the following standard Galerkin form:

∇ � _u ≈ bm _dm þ bg _dg (59)

Here for a 2-D problem, b
m
takes the following form:

bm ¼ 1TBm ¼ ∇TNm (60)

where Bm is given in the following section by equation (63).

Lastly, the weighting function can be interpolated in 2-D using matrix nodes:

w ≈ Nmĉm (61)

where ĉm is an arbitrary vector or virtual nodal pressure.
4.2.2. The Solid Problem With Fluid-to-Solid Coupling
Following standard methods, the test function, the virtual strain, and the strain can be interpolated in 2-D
using matrix nodes. Employing the Galerkin approximation on the solid Dirichlet boundary, we have

η ≈Nmφm ∇sη
n o

≈ Bmφm ∇suf g ≈ Bmdm þ Bgdg ∀x ∈Ωm (62)

whereφ
m
is an arbitrary vector or virtual nodal displacement and B is the standard displacement–strain trans-

formation matrix, which reads

Bm ¼
Nm1;x 0 Nm2;x

0 Nm1;y 0

Nm1;y Nm1;x Nm2;y

0 Nm3;x 0

Nm2;y 0 Nm3;y

Nm2;x Nm3;y Nm3;x

2664
3775 (63)

The projections of η along a fracture is specified as

ητf i ¼ τf i � η ¼ τTf iη ¼ τTf iNmφm ¼ φT
m
NT
mτf i ∀x ∈ ∂f i (64)

where

τf i ¼ cos θi; sin θið ÞT (65)

1-D interpolation is then employed for the fracture tangential displacement:

uf iτ ≈ Nf iτdf iτ ¼ Nf iτRf i df i ¼ Nf iτRf iLf i dm ∀x ∈ ∂f i (66)

where Rf i is the rotation matrix dependent on the fracture orientation:

Rf i ¼
cos θi

0

sin θi

0

0

cos θi

0

sin θi

" #
(67)

From equations (51), (53), (65), and (67), it follows that

NT
f iττf i ¼ Nf iτRf i

� �T ¼ RT
f i N

T
f iτ (68)
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Substituting in equations (64) and (66), honoring equation (55), and consulting equation (68), we arrive at the
following symmetric form of the fracture-related term in equation (48):X
i∈nf

bMi∫∂f i∇nητf i Gf iτ∇nuf iτdΓ ¼
X
i∈nf

bMi∫∂f iφTmNT
m;nf i

τf i Gf iτNf iτ;nf i
Rf iLf i dΓdm

¼
X
i∈nf

bMi∫∂f iφTmLTf iNT
f iτ;nf i

τf i Gf iτNf iτ;nf i
Rf iLf i dΓdm

¼
X
i∈nf

bMi∫∂f iφTmLTf iRT
f i N

T
f iτ;nf i

Gf iτNf iτ;nf i
Rf iLf i dΓdm (69)

Here the normal gradient ofN
f iτ
is approximated as the following, based on the normal transversal uniformity

assumption (here we give the element-wise expression):

∇nN
e
f iτ ¼ Ne

f iτ;nf i
¼ Ne

f iτ;τf i
τf i ;nf i ¼ � 1

lei
;
1
lei

� �
lei
bMi

¼ � 1
bMi

;
1
bMi

� �
(70)

where lei is the length of a line element of the ith fracture.

4.3. Semidiscrete Form

Substituting equations (56)–(61) into equation (44); substituting equations (56), (62), (64), (66), and (69)–(70)
into equation (48); and noticing equations (19), (54), and (55), we arrive at the following semidiscrete form of
the nonlinear and coupled equations:

M ζ̂ f
� �

�CT

0 0

" #
_̂ζm
_dm

( )
þ K ζ̂ f

� �
0

C G

" #
ζ̂m
dm

( )
¼ F

Y

� 
(71)

where ζ̂f ¼ ⋃nfi¼1ζ̂f i ⊂ ζ̂m, and the matrices and vectors take the following forms:

M ζ̂ f
� �

¼ ∬Ωm
NT
m Λ0ϕm0 Cm þ Cρ

� �� �
NmdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

matrix storage capacity; Mm

þ
X
i∈nf

bHi ζ̂ f i
� �

∫∂f iQT
f i N

T
f iτ 1� Λ0ð Þϕf i0 Cf i þ Cρ

� �� �
Nf iτQf i dΓ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DFN storage capacity;
P
i

Mf i ζ̂ f ið Þ

(72)

K ζ̂ f
� �

¼ ∬Ωm
∇Nmð ÞTκm ∇Nmð ÞdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

matrix conductivity; Km

þ
X
i∈nf

bHi ζ̂ f i
� �

∫∂f iQT
f i ∇τNf iτ

� �T 1
12

bHi
2 ζ̂ f i
� �� �

∇τNf iτ

� �
Qf i dΓ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DFN tangential conductivity;
P
i

Kf i ζ̂ f ið Þ
�
X
j∈nfI

∫∂f IjQ
T
f j N

T
f jτ

1
12

bHj
2 ζ̂ f j
� �� �

∇τNf jτQf j dΓ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matrix-to-DFN mass transferability; �

P
j

Kmf j ζ̂ f j

� �
þ
X
k∈nfII

∫∂f IIkQ
T
f k
NT
f kτn

T
f k

κþm∇N
þ
m � κ�m∇N

�
m

� �
dΓ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DFN-to-matrix mass transferability;
P
k

Kf km

(73)

G ¼ ∬Ωm
BT
mDmBmdΩ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

matrix stiffness; Gm

þ
X
i∈nf

bMi∫∂f iLTf iRT
f i ∇nNf iτ

� �T
Gf iτ ∇nNf iτ

� �
Rf iLf i dΓ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DFN tangential stiffness;
P
i

Gfi

(74)
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C ¼ ∬Ωm
NT
mα∇NmdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coupling matrix; DFN-independent

(75)

F ¼ ∬∂Ωv
NT
mvhdΓ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

fluid Neumann B:C:

þ∬Ωm
NT
msdΩ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

external fluid source

� ∬Ωm
∇Nmð ÞTκm ∇Ng

� �
ζ̂ gdΩþ∬Ωm

NT
m Λ0ϕm0Cmð ÞNg

_̂ζgdΩ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fluid Dirichlet B:C:

�∬Ωm
NT
mα∇

TNg
_dgdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coupling at the Solid Dirichlet boudary

(76)

Y ¼ ∫∂Ωt
NT
mthdΓ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

solid Neumann B:C:

�∬Ωm
BT
mDmBgdgdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

solid Dirichlet B:C:

�∬Ωm
NT
mα∇Ngζ̂ gdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coupling at the fluid Dirichlet boundary

(77)

When compared to the known semidiscrete form of equation for a classical linear and fracture-free porome-
chanical problem, equations (72)–(77) highlight a DFN’s threefold effect. The first effect is reflected by the
modification to two existing terms, specifically, the first term in M and the last term in F , where the

geometry-dependent parameter Λ0 x
� �

appears. It eliminates the need for calculating upscaled hydraulic

properties as are required by the DPDP model. F is otherwise canonical owing to the assumption that the

external fluid source is provided only in the matrix, and possible interactions at fracture-boundary intersec-
tions are not considered.

The second effect is shown by several additional terms, as elaborated here. InM, the second term arises from
fractures acting as a primary type of pores for fluid storage. In K, the second term arises from the fracture tan-
gential flow. This term, although in different forms, has also been shown in several other studies (Baca et al.,
1984; Kim & Deo, 2000; Yao et al., 2010; Zhang et al., 2013). These two terms directly result from mass conser-
vation over the fracture domain that does not interact with the matrix domain. The interaction (mass
exchange) is introduced by the next two terms. The third term in K applies only to fully immersed fractures
where matrix-to-fracture mass transfer occurs, and the fourth term in K, which introduces asymmetry and
applies only to partially immersed fractures, accounts for fracture-to-matrix mass transfer. The two transfer

terms, together with the geometry-dependent parameter Λ0 x
� �

, allow formulation of the conservation law

over an integrated matrix-fracture domain; this contrasts with the domain separation approach favored by
the DPDP model. In addition, the two transfer terms are especially important for studying the role of poroe-
lastic stress in induced seismicity as they predict an equivalent body force acting away or toward fractures.
We also note that all the terms in M and K distinguish our method from a single-layer interface element
approach developed for such a weakly discontinuous flow problem where the mass exchange between frac-
tures and the matrix is assumed and the storage capacity of the system is not considered (Segura & Carol,
2004). Finally, in G, the second term is due to the fact that fractures act as finite-thickness deformation zones
even prior to failure.

Element-wise, all the fracture-related terms appear only for hybrid elements and vanish for nonhybrid ele-
ments. This allows for the development of an independent subroutine for bringing the DFN into the existing
computational framework of poromechanics. The standard procedure for assembling global matrices still
applies. It is worth noting that prior to the assembly, the elemental matrices corresponding to the second
term in M, the second and third terms in K, and the second term in G all need to be halved to prevent
repeated collection of contributions from fracture elements. Note also that at an elemental level, the sums
in these terms are only intended over however many fractures a hybrid element conforms to.

The third effect lies in the nonlinearity that is introduced into the system by equations (72) and (73) via the
pressure-dependent hydraulic aperture. It is obtained by replacing the pressure in equation (21) with the
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corresponding discrete nodal pressure. Finally, notice that the coupling matrix is not dependent on the DFN.
Details regarding the implementation of the DFN is given in Appendix A.3.

4.4. Time Discretization

The solution to equation (71) is advanced in time in a fully coupled manner using a fully implicit finite differ-
ence method (the backward Euler scheme), which offers unconditional stability and first-order accuracy.
Evaluating all pressure-dependent terms and the external nodal force vector at the next time step, we obtain

M nþ1ð Þ �CT

0 0

" #
1
dt

ζ̂m
dm

( ) nþ1ð Þ
� ζ̂m

dm

( ) nð Þ8<:
9=;þ K nþ1ð Þ 0

C G

" #
ζ̂m
dm

( ) nþ1ð Þ
≈

F

Y

�  nþ1ð Þ
(78)

where dt is the time increment which, in theory, is not subjected to any restriction and superscripts (n+1) and
(n) indicate the next and the current time steps.

5. Linearization

To start, we divide both sides of the solid subproblem by dt and rewrite equation (78) in the following form:

M nþ1ð Þ �CT

0 0

" #
1
dt

ζ̂m
dm

( ) nþ1ð Þ
� ζ̂m

dm

( ) nð Þ8<:
9=;þ K nþ1ð Þ 0

C=dt G=dt

" #
ζ̂m
dm

( ) nþ1ð Þ
≈

F nþ1ð Þ

Y nþ1ð Þ=dt

( )
(79)

As will be shown, this additional step ensures the positive-definiteness of the Jacobian (see equation (85))
irrespective of the choice of dt, provided that the capacity, conductivity, and stiffness matrices (see
equations (72)–(74)) are positive-definite. Equation (79) is nonlinear and must be solved using an iterative
linearized procedure. Here we implement the classic Newton-Raphson scheme:

J ς nþ1;kð Þ; dt
� �

ς nþ1;kþ1ð Þ � ς nþ1;kð Þ
� �

¼ �R ς nþ1;kð Þ; ς nð Þ; dt
� �

(80)

where J is the Jacobian, R is the residual, and ς ¼ ζ̂m; dm

h iT
is the primary unknown, all of which are

evaluated at the time step (n+1), and (k+ 1) and (k) indicate two successive iteration steps.

The residual R is obtained from equation (79) by multiplying both sides with dt and rearranging it as the

following:

R nþ1;kð Þ ¼
RF

RY

( ) nþ1;kð Þ

¼ M nþ1;kð Þ þ dtK nþ1;kð Þ �CT

C G

" #
ζ̂m

dm

( ) nþ1;kð Þ

� M nþ1;kð Þ �CT

0 0

" #
ζ̂m

dm

( ) nð Þ

� dtF nþ1ð Þ

Y nþ1ð Þ

( )
(81)

Here

M nþ1;kð Þ ¼ Mm þ
X
i∈nf

ai
nþ1;kð ÞMf i

0ð Þ (82)

K nþ1;kð Þ ¼ Km þ
X
i∈nf

ai
nþ1;kð Þ

� �3
Kf i

0ð Þ �
X
j∈nfI

aj
nþ1;kð Þ

� �2
Kmf j

0ð Þ þ
X
k∈nfII

Kf km (83)

In equations (82) and (83), Mf i
0ð Þ, Kf i

0ð Þ, and Kmf j
0ð Þ are obtained from their respective expressions shown in

equations (72) and (73) by substituting in the corresponding initial hydraulic aperture, and the dimensionless
parameter a, evaluated at the time step (n+ 1) and the nonlinear iteration step (k), is given by

a nþ1;kð Þ
r ¼ 1þ Cf r ζ̂

nþ1;kð Þ
f r

� �
; r ¼ i; j (84)
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Lastly, the Jacobian J takes the form of

J ¼ J11 J12
J21 J22

� � nþ1;kð Þ
¼ J11 nþ1;kð Þ J12

J21 J22

" #
(85)

where the four block submatrices are derived from equation (81) and they read

J11 ¼ ∂R nþ1;kð Þ
F

∂ζ̂ nþ1;kð Þ
m

¼ Mm þ
X
i∈nf

ai
nþ1;kð Þ þ Cf i ζ̂

nþ1;kð Þ
f i

� �
Mf i

0ð Þ

þdt Km þ
X
i∈nf

ai
nþ1;kð Þ

� �3
þ 3 ai

nþ1;kð Þ
� �2

Cf i ζ̂
nþ1;kð Þ
f i

� �
Kf i

0ð Þ
 !

þ dt �
X
j∈nfI

aj
nþ1;kð Þ

� �2 þ 2aj nþ1;kð ÞCf j ζ̂
nþ1;kð Þ
f j

� �
Kmf j

0ð Þ þ
X
k∈nfII

Kf km

 !

(86)

J12 ¼ ∂R nþ1;kð Þ
F

∂d nþ1;kð Þ
m

¼ �CT (87)

J21 ¼ ∂R nþ1;kð Þ
Y

∂ζ̂ nþ1;kð Þ
m

¼ C (88)

J22 ¼ ∂R nþ1;kð Þ
Y

∂d nþ1;kð Þ
m

¼ G ¼ Gm þ
X
i∈nf

Gf i (89)

6. Numerical Example
6.1. Asymptotic Model Setup

We generate a 2-D asymptotic model domain containing a stochastic DFN composed of 100 1-D fractures
(see Figure 8). The domain is 200 m × 200 m and contains a centered circular empty area with radius 5 m.
Dirichlet and Neumann boundaries are indicated. In this example, ∂Ωp=∂Ωu and ∂Ωv=∂Ωt. Centers of fracture
are seeded following a nonuniform random distribution and are more concentrated near the domain center.
Fracture lengths and orientations are generated following uniform distributions on the ranges [20 m, 50 m]
and [0°, 360°], respectively. The DFN is partially interconnected. Type I and II fractures are colored with blue
and green, respectively. Several meshing tools are available for generating the conforming mesh (e.g., Erhel
et al., 2009; Hyman et al., 2015) required by this study. Here we augment an open-source MATLAB code called
DistMesh (Persson & Strang, 2004). Without elaborating on its meshing algorithm, here, we link it to our sto-
chastic DFN by (1) iteratively defining an appropriate “edge” function based on the supplied geometry of
each fracture, (2) setting global mesh size and quality control parameters for all fractures, and (3) specifying
densely spaced fixed points on each fracture. The asymptotic model domain is then discretized into a set of
linear triangular elements at a specified resolution, and fractures are resolved as conforming linear line ele-
ments. The final representation of the DFN might be slightly different, but an excellent preservation of the
DFN is always maintained with a high-quality mesh. Hybrid elements are then identified (Appendix A.3)
and are highlighted in magenta.

Table 2 lists the nominal parameters used in the numerical example. For demonstration purposes, and this
does not change the generality of the method, we let all fractures have the same hydraulic and mechanical
properties. We simulate injection by imposing a constant pressure of 5 MPa on ∂Ωp instead of by prescribing
fluid flux or specifying external sources. The simulated total injection time is 100 min, and the time increment
is set to be 100 s.

Equation (78) is solved following the iterative linearization procedure described in section 5. Within each time
step, the iteration is terminated when the following criteria are met:

R ςnþ1;kþ1
� ��� ��

2
≤ 10�6 ζ̂m

nþ1;kþ1 � ζ̂m
nþ1 ;k

���� ����
2
≤ 0:01 ζ̂m

n
��� ���

2
dm

nþ1;kþ1 � dm
nþ1 ;k

��� ���
2
≤ 0:01 dm

nk k2 (90)
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6.2. Fluid Pressure

Figure 9, known as the R-T plot, shows the modeled spatial-temporal
distribution of the fluid pressure. R refers to the distance from the
domain center (0,0), which is shown on the vertical axis, and T refers
to the time, which is shown on the horizontal axis. The color indicates
the fluid pressure, plotted on both a linear scale (Figure 9a) and a
logarithmic scale (Figure 9b). Specific to the latter, it is the quantity
log10|p0/5| × sign(p0) that is used for coloring, where p0 is identical to
the fluid pressure p except that any value that is 6 orders of magni-
tude below the injection pressure pg (i.e., �5 Pa ~ 5 Pa) is rounded
to�5 Pa or 5 Pa. Overlaying both plots are several diffusion fronts, cal-

culated as ri ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πDit

p þ 5m . Here
ffiffiffiffiffiffiffiffiffiffi
4πDt

p
defines a characteristic

pressure front resulting from a point-source injection of fluid into an
isotropic, homogeneous porous medium with a hydraulic diffusivity
D= k/(ηCϕ) (Shapiro et al., 1997). The upper profile, calculated using
kf iτ,Cf i in Table 2 and ϕf= 1 (equation (9)), corresponds to the fracture
diffusivity Df; the lower profile, calculated using ϕm=0.25,
kmx= kmy= 1 mD, and Cm in Table 2, corresponds to the mean matrix
diffusivity Dm. In Figure 9a, we observe that the delineated pressure
front is well constrained between the two profiles; it approximately
coincides with the one calculated using a diffusivity of 0.08 m2/s,
which can be regarded as the overall “effective” diffusivity of the

DFN-matrix system. Figure 9b reveals more details of pressure changes that are orders of magnitude lower
than the injection pressure. First, within the delineated diffusion front, the DFN leads to a heterogeneous dis-
tribution of the pressure magnitude in the R-T space, as are shown by the isochromatic “stripes” extending in
the horizontal direction; this contrasts with a smooth variation that otherwise occurs in the absence of frac-
tures (e.g., Segall & Lu, 2015). Second, even beyond the delineated diffusion front, noticeable changes in the
fluid pressure still occur. These changes are directly attributed to the solid-to-fluid coupling effect that drives
changes in the porosity and therefore in the fluid pressure. It is worth noting that such changes cannot be
predicted in a pure fluid diffusion process where the solid-to-fluid coupling is absent. In addition, because
of the presence of the DFN, these changes are heterogeneous. Depending on the location and the time,
the pressure either increases or decreases, suggesting compressive and extensional poroelastic strain and
stress, respectively. Furthermore, the solid-to-fluid coupling effect also manifests itself through the fluid

Table 2
Model Nominal Parameters

Parameter Value

η Fluid viscosity 10�3 Pa·s
ϕm0 Matrix initial porosity 0.24–0.26, random
kmx, kmy Matrix permeability 0.9–1.1 mD, random
Cm Matrix compressibility 1.5 × 10�9 Pa�1

kfiτ Fracture tangential permeability 1000D (b≈0.11 mm from equation (19)), i = 1–100

Cfi Fracture compressibility 1.5 × 10�7 Pa�1, i = 1–100
Cρ Fluid compressibility 5.1 × 10�10 Pa�1

pg Dirichlet boundary value (fluid pressure) 5 MPa (above an arbitrary initial pore pressure)
vh Neumann boundary value (flow velocity) 0
s External fluid source 0
dt Time increment for the fluid problem 100 s
α Biot-Willis coefficient 0.8
Em Matrix Young’s modulus 40 GPa
νm Matrix Poisson’s ratio 0.25
Gfi Fracture shear modulus 1 GPa, i = 1–100
ug Dirichlet boundary value (displacement) 0
th Neumann boundary value (traction) 0

Type I
fracture

Type II
fracture

Non-
hybrid
element

Hybrid
element

Figure 8. A 2-D asymptotic model domain with external flow and mechanical
boundaries. A stochastic DFN composed of type I (blue) and type II (green)
fractures is embedded in the form of internal discontinuities. An unstructured
mesh conforming to the DFN is generated and hybrid elements are highlighted.
The meshing code is adapted from the open-source code DistMesh (Persson &
Strang, 2004).
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pressure boundary effect, as are shown by the alternating positive and negative pressure changes near the
boundary (distance above 100 m) in both Figures 9a and 9b.

Figure 10 shows examples of the spatial distribution of the fluid pressure at four time steps. In Figures 10a–10d,
the pressure is plotted on a linear scale. Due to their high conductivity, the injection pressure diffuses primar-
ily along the fractures interconnected back to the boundary of injection (i.e., type II fractures). Diffusion into
the matrix is secondary. Overall, the colored area delineates a diffusion-dominated region. In detail,
Figures 10e–10h show the pressure on a logarithmic color scale. The DFN causes strong heterogeneity in

Figure 10. Snapshots of the spatial distribution of the fluid pressure at four selected time steps. The time is indicated at the top of each plot. (a–d) Linear color scale
and (e–h) logarithmic color scale. The pressure field is continuous but highly heterogeneous due to the DFN. Figures 10a–10d show the major area where the
pressure diffusion occurs. Figures 10e–10h further highlight the diffusion-dominated area, as well as the remaining area where the pressure either increases or
decreases due to the DFN and the solid-to-fluid coupling effect. Notice also the pressure boundary effect near the edges of the domain as a direct result of the solid-
to-fluid coupling effect.

Figure 9. Modeled spatial-temporal distribution of the fluid pressure. (a) Linear color scale and (b) logarithmic color scale.
The maximum pressure is 5 MPa. However, notice in Figure 9a that the color is fully saturated at 1 MPa for better
visualization. Two characteristic diffusion profiles derived from the diffusivity of fractures and the matrix are shown
respectively as the upper and lower bounds, together with several other in-between profiles. A diffusion front is well
delineated in Figure 9a, reflecting the overall “effective” diffusivity of the medium. Figure 9b reveals more details on the
effect of the DFN and the solid-to-fluid coupling effect, as are elaborated in the text.
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the pressure field. Similar to what is observed in Figure 9b, here, outside the diffusion-dominated area and
depending on the time and the location relative to fractures, the pressure either increases or decreases, sug-
gesting compressive and extensional poroelastic strain and stress. More details are elaborated following
Figure 13.

6.3. Flow Velocity (Equivalent Body Force)

Figure 11 shows examples of the spatial distribution of the flow velocity in the matrix, vm, calculated at the

same selected time steps according to equation (16). The flow velocity within each fracture, vf iτ , which is
orders of magnitude higher, is not shown. Both x and y components are shown. In addition, a logarithmic

quantity, log10 vm


 

, is also plotted to show the magnitude. The vectors show the directions of vm at different

locations. It can be seen that the highly conductive fractures act as preferred flow paths, leading to high flow
velocities around them. Meanwhile, they behave as hydraulic weak discontinuities, providing fluid to the sur-
rounding matrix and causing vm to vary discontinuously across them. We point out that the flow velocity and

the equivalent body force are linearly indicative of each other, as is suggested by equations (16) and (25).
Therefore, with appropriate scaling, one can expect the equivalent body force to follow the same distribution
shown in Figure 11.

6.4. Poroelastic Displacement

Figure 12 shows examples of the spatial distribution of the poroelastic displacement at the same selected
time steps. Here we observe the following. First, the solid undergoes expansion, leading to overall outward
displacements throughout the domain. This arises directly from the fluid-to-solid coupling effect that drives
deformation via the (negative) pressure gradient. Second, because of the inclusion of the transverse simple

Figure 11. Snapshots of the spatial distribution of the flow velocity in the matrix, vm


 

, at four selected time steps. The time is indicated at the top of each plot. (a–d)

The x component on a linear color scale, (e–h) y component on a linear color scale, and (i–l) magnitude on a logarithmic color scale. Both x and y components follow a
discontinuous distribution. Notice in Figures 11i–11l, the magnitude of the velocity is on the order of 10�13–10�6 m/s. However, in Figures 11a–11h, the color is
saturated within the range from �4 × 10�7 to 4 × 10�7 m/s for better visualization. The distribution of the equivalent body force is expected to be the same after
appropriate linear scaling.
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shear behavior of fractures in the model, the displacements appear highly dependent on the DFN and are
more prominent in some areas than in others. Therefore, notice that the expansion is nonradial and
localized. Furthermore, the displacements are continuous but not necessarily smooth across a fracture, as
are indicated by the “kinks” in the contours across some fractures.

6.5. Poroelastic Stress

Figure 13 shows examples of the spatial distribution of the poroelastic stress (effective, as opposed to total) in

the matrix, σ0
m, calculated at the same selected time steps according to equation (27). The stress within frac-

tures is not shown. Note that the domain is subjected to zero traction at the outer periphery and is fixed on
the well boundary. The normal components along both x direction (see Figures 13a–13d) and y direction (see
Figures 13e–13h), as well as the shear component (see Figures 13i–13l), are shown. Here we emphasize that
the occurrence of shear stress can only be predicted by including the fluid-to-solid coupling effect (i.e., the

poroelastic process). In addition, two quantities, I10/3 (see Figures 13m–13p) and
ffiffiffiffiffiffi
J20

p
(see Figures 13q–

13t), are also shown to reflect the mean normal stress and the amount of the shear stress. Here I10 and J20

are the first stress invariant and the second deviatoric stress invariant, respectively, both calculated from a

3-D effective stress tensor that is obtained by supplementing σ0
m with the remaining five components given

by the plane strain solution.

From Figures 13a–13d and Figures 13e–13h, we observe the following regarding the poroelastic normal
stress. First, along either x or y, due to poroelastic expansion of the solid, overall, the area near the injection
undergoes extension, whereas the area further away from the injection undergoes compression, in that
direction. Over time, the extensional stress progresses always from the injection to cover more area while
the compressive stress recedes toward the outer boundary to cover less area. Second, because of the trans-
verse simple shear behavior of fractures, the distribution of the normal stress appears rather “patchy” and
DFN-dependent. This is also reflected in the nonradial expansion of the solid shown in Figure 12.
Nonetheless, notice that the normal stress is always continuous in space. Third, the area immediately near
a fracture located within the diffusion-dominated region (see Figures 10a–10d) undergoes extensional stress.
In other words, if the pressure change within a fracture is predominantly caused by the fluid diffusion rather
than the solid-to-fluid coupling, then this fracture tends to expand outward, leading to extensional normal
stress immediately near it. This is especially evident in the mean normal stress, see Figures 13m–13p.
However, further away from the fracture, compression is possible, and therefore, lastly, we observe compart-
mentalized compressive stress in areas surrounded by fractures, even though these areas are located within
an overall extensional environment.

There is also an excellent agreement between the fluid pressure and the mean poroelastic normal stress.
Comparing Figures 10e–10h against Figures 13m–13p, we observe that outside the diffusion-dominated
region where the fluid pressure is driven by the solid-to-fluid coupling, compressive mean normal stress coin-
cides with pressure increase, and extensional mean normal stress coincides with pressure decrease, due to
porosity reduction and growth, respectively.

The distribution of the poroelastic shear stress turns out more intriguing. It is shown by Figures 13i–13l that in
this particular example, overall, quadrants I and III experience positive shear stress (left-lateral sense of shear),

Figure 12. Snapshots of the spatial distribution of the poroelastic displacement at four selected time steps. The time is indicated at the top of each plot. The color
indicates the logarithmic-scale magnitude, and the vectors indicate the direction. The displacement is outward but nonradial.
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Figure 13. Snapshots of the spatial distribution of the effective poroelastic stress tensor in the matrix, σ0
m , at four selected time steps. The time is indicated at the

top of each plot. (a–d) The x normal component, (e–h) y normal component, (i–l) shear component, (m–p) mean normal stress, and (q–t) deviatoric stress.
Figures 13m–13t are derived based on a plane strain solution. The color is on a linear scale in all plots and is saturated in a range within the modeled maximum
and minimum values for better visualization. In Figures 13a–13d, 13e–13h, and 13m–13p, cool color indicates compressive stress whereas warm color indicates
extensional stress. Notice that the poroelastic effective stress tensor is markedly different in both spatial distribution and magnitude than that predicted by the
fluid-to-solid decoupled approach, σ

0
m x ; t
� �

≠� αp x ; t
� �

1, where p x ; t
� �

is shown in Figure 10. Notice also the stress heterogeneity, as shown by the patchy
distribution, due to the transverse simple shear behavior of fractures.
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while quadrants II and IV experience negative shear stress (right-lateral sense of shear). Similar to what is
observed for the normal stress, here, in either case, shear in the opposite sense can occur and be compart-
mentalized. Interestingly, the shear stress can also appear “discontinuous.” This is especially evident in the
deviatoric stress, see Figures 13q–13t. It is worth noting that such discontinuities are apparent discontinuities
as opposed to true discontinuities, because the details within lower dimensional fractures are not shown in the
asymptotic domain. The shear stress is in fact continuous, but sharp variations can occur within the finite
thickness of a fracture, as illustrated in Figure 5. A similar outcome was presented by Chang and Segall
(2016) through a simpler configuration in which a single fault with an explicit thickness was discretized as
equal-dimensional elements in Comsol. Note that such apparent discontinuities are made possible by two
necessary conditions: (1) inclusion of the transverse simple shear behavior, specifically, the second term in
equation (74) and (2) nonsymmetrical poroelastic response on the two sides of a fracture.

7. Summary and Conclusion

In this study, we established a fully coupled model of transient fluid flow and prefailure quasi-static poroelas-
ticity in a porous medium embedded with an arbitrary network of discrete fractures. The model domain con-
sists of (1) compressible pores and fractures fully saturated with a compressible fluid and (2) a deformable
solid with mechanical layering across the fracture zone. The coupled conservation laws were derived within
the classic framework of Biot’s theory of poroelasicity but require a twofold reformulation to account for frac-
tures. First, the storage property of the system was redefined by treating fractures as localized “porosity.”
Second, in a local reference frame, a separate set of fluid and solid constitutive laws for each individual frac-
ture were included, augmenting the conductivity and stiffness properties of the system. In addition, the fluid
within each fracture behaves in a nonlinear fashion, resulting in an overall nonlinear coupled system.
Fractures were explicitly represented throughout the formulation, and no upscaling was used.

We then presented in detail the discretization schemes for the model and the computational procedures.
Specifically, for the space discretization, we proposed a hybrid-dimensional, equal-low-order, two-field mixed
finite element method. Central to the hybrid-dimensionality is that transversal variations in the tangential
fluid flux and the shear strain within each fracture are not resolved, as the hydraulic aperture of the fracture
and the thickness of the fracture zone are orders of magnitude lower than typical mesh size in the rest of the
domain. Instead, a transversal uniformity assumption allows a much more efficient discretization. In the end,
fractures introduce no separate nodes, and therefore, no additional degrees of freedom. For the drained por-
oelastic system, the equal-low-order mixed interpolation scheme suffices as it does not violate the inf-sup
stability constraint; therefore, no spurious oscillation in the fluid pressure field is present. For the time discre-
tization, we utilized a fully coupled fully implicit scheme. Within each time step, we employed a fully implicit
Newton-Raphson scheme for solving the nonlinear equations. One important outcome of the study is the
fracture-related expressions in the fully discrete form of the coupled equations. We showed that fractures
translate to the modification and augmentation to the capacity, conductivity, and stiffness matrices, whereas
the coupling matrices remain unchanged.

In addition to its general ability to model a more complex poroelastic system, our computational model
also offers several advantages. First, the complications due to domain separation, interaction, and regular-
ization that are typically encountered in a DPDP-based approach are avoided. The mass exchange
between the matrix and a fracture, depending on the type of the fracture, can be resolved by either
admitting discontinuity in the fluid normal flux across it or enforcing local mass conservation as an inter-
face condition. Second, the arbitrary distribution of the DFN is preserved, allowing us to capture the con-
trol of a given DFN on the distribution of the fluid pressure and the solid deformation and stress.
Therefore, our model can provide more accurate inputs for the study of poromechanical problems like
induced seismicity where an explicit representation of a fracture is crucial. Third, the hybrid-dimensional
approach provides an efficient numerical solution and allows a relatively large number of fractures to
be included. Lastly, the fracture-related modules can be readily turned on and off in the model, allowing
us to investigate the sensitivity of the system response to fractures, including their distribution, hydraulic
and mechanical properties, and fracture-induced nonlinearity.

The numerical example also offers several insights. First, the distribution of the fluid pressure is characterized
by a diffusion-dominated area and a solid-to-fluid-coupling-dominated area, both strongly depending on the
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DFN. In both areas, because of the presence of the DFN, the fluid pressure is highly heterogeneous compared
to that in a fracture-free system. Nonetheless, an “effective” hydraulic diffusivity can be determined for the
fractured system. Within the diffusion-dominated area, the pressure increases primarily along the fractures
and secondarily in the matrix, whereas in the coupling-dominated area, the pressure either increases or
decreases coinciding with compressive and extensional poroelastic normal stress, respectively. Second, the
poroelastic stress is significantly different than that predicted by the fluid-to-solid decoupled approach. In
general, within the diffusion-dominated area, extensional poroelastic normal stress occurs, but is of lower
magnitude with coupling; outside the diffusion dominated area, compressive poroelastic normal stress
occurs; additional shear stress also develops over the entire domain. The latter two cannot be predicted by
the decoupled model. Lastly and more interestingly, while the poroelastic normal stress is predominantly
extensional immediately near fractures in the diffusion-dominated area, due to fractures acting as finite-
thickness deformation zones, the poroelastic stress is highly heterogeneous. Extensional poroelastic stress
can be compartmentalized in an overall compressive area, and vice versa. The same happens to shear stress
of opposite sense. In addition, the shear stress can vary sharply across fractures, resulting in an apparent loss
of the deviatoric stress.

Notation and Nomenclature

Light-face letters denote scalars; capped and underlined letters, e.g., â and a , indicate vectors without and

with directional dependence; and bold-face letters designate matrices or tensors. (·)T is the transpose opera-
tor; “·” indicates vector dot product, “:” represents double tensor contraction, and 〚·〛∶ ¼ ·ð Þ Γþ � ·ð Þj jΓ�
defines a jump of a quantity across an interface Γ. In addition, quantities associated with the porous matrix
and fractures are labeled using subscript “m” and “f,” respectively. In particular, subscript fi refers to the ith
fracture, with no summation intended over the repeated “i.” Wherever needed, summation is specified
using

P
i. Subscript “0” implies initial values. The ∂t and (·) indicates local and total time derivatives,

respectively, and ∂(∙) is used exclusively to indicate domain boundaries. Moreover, a default global
Cartesian system x ¼ x; yð Þ and a set of local coordinate systems ξ

f i
¼ τf i ; nf ið Þ are used, where, “τf i ”

and “nf i ” represent the local fracture tangential and normal directions, respectively. The ∇ and ∇· are
the gradient operator and divergence operator in x, whereas ∇τ and ∇n are the local tangential and normal

gradient operators in ξ
f i
. Note that “fi” is not specifically labeled for these two operators; however, when

used, they imply local fracture directions. Further note that subscript “fiτ” implies that the ith fracture-
related quantity is defined only along the tangential direction (or has only a tangential component),
whereas subscript “τf i ” indicates the projection of a quantity along the tangential direction.

Domain and boundary

Ω,Ωasy computational domain, asymptotic domain
∂Ω domain boundary
∂Ωp,∂Ωv fluid Dirichlet boundary, fluid Neumann boundary
∂Ωu,∂Ωt solid Dirichlet boundary, solid Neumann boundary
∂f,∂fI,∂fII fracture surface, type I fracture, type II fracture
bH, bM fracture hydraulic aperture, fracture zone thickness, m
θ fracture orientation, deg
l fracture length, m
nf,nfI,nfII number of fractures, type I fractures and type II fractures

Fluid

ϕ,Φ intrinsic porosity, partial porosity, [�]
V,Vϕ total volume, pore volume, m3

Λ geometry parameter, [�]
C compressibility, Pa�1

η fluid viscosity, Pa∙s
κ,κ conductivity tensor, fracture tangential conductivity, m2/(Pa∙s)
k,k permeability tensor, fracture tangential permeability, m2

ρ fluid density, kg/m3

v,vh flow velocity, fluid Neumann boundary value, m2/s
S external fluid source/sink, kg/(m3 s)
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s external fluid source/sink divided by the initial fluid density, s�1

p,pg fluid pressure (relative to an initial state), fluid Dirichlet boundary value, Pa

Solid

D elastic stiffness tensor, Pa
E, G Young’s modulus, fracture shear modulus, Pa
ν Poisson’s ratio, [�]
u,ug displacement (relative to an initial state), solid Dirichlet boundary value, m
t; th traction, solid Neumann boundary value, Pa
ε strain tensor, [�]
γ fracture simple shear strain, [�]
σ0 ,σ effective stress tensor, Cauchy total stress tensor, Pa
σnτ fracture shear stress, Pa
1,1 unit identity tensor (Kronecker delta), unit identity vector in Voigt notation, [�]
f b ,f p body force, equivalent body force due to pressure gradient, N/m3

Coupling
α Biot-Willis coefficient, [�]

Weak formulation, discretization, and iteration
w virtual pressure
η virtual displacement
Q,L dimensional transformation matrices
R rotation matrix
ζ̂ ,̂c nodal fluid pressure, nodal virtual pressure
d,φ nodal solid displacement, nodal virtual displacement

ς combined primary unknown vector, ζ̂ ; d
� �

N,N shape functions for the fluid problem and the solid problem
B displacement-strain transformation matrix
b displacement-volumetric strain transformation vector
M capacity matrix
K conductivity matrix
G stiffness matrix
C coupling matrix
F external nodal mass
Y external nodal force
J Jacobian matrix
R residual vector
dt time increment, s
H superscript indicating a hybrid domain or element
(n),(n + 1) subscripts indicating current and next time steps
(k),(k + 1) subscripts indicating current and next iteration steps

Appendix A

A.1 The Dual-Porosity Double-Permeability (DPDP) Fluid Model

In the DPDP fluid model, the domain is partitioned into a porous matrix domain and a fracture domain. Both
domains are fully saturated with a single-phase fluid that follows a linear Darcy’s law and are governed by
their respective conservation laws, which interact via a common mass exchange term (Barenblatt et al.,
1960; Warren & Root, 1963):

∇ � ρη�1km � ∇pm
� � ¼ ∂

∂t
ρϕmð Þ þ Γ pm � pfð Þ þ Sm onΩm

∇ � ρη�1kf � ∇pfð Þ ¼ ∂
∂t

ρϕfð Þ � Γ pm � pfð Þ þ Sf onΩf

(A1)

where ρ is the fluid density; η is the fluid viscosity; k is the permeability tensor; ϕ is the intrinsic porosity; p is
the fluid pressure; S is the external fluid source/sink term; and Γ is the shape factor, the calculation of which
requires upscaling; and subscripts m and f denote the matrix domain and the fracture domain, respectively.
Typically, ϕf=1.
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A.2 The Solid-to-Fluid Coupling Term

Denote the bulk modulus of the bulk volume, the solid skeleton, and the fluid-filled pore as K, Ks, and KΦ. Here
the pore broadly refers to both the matrix pore and fractures. Correspondingly, the volumetric changes
resulted from an unit amount of mean stress/isotropic confining pressure are then 1/K, 1/Ks, and 1/KΦ, which
satisfy the following relationship:

1
K
¼ 1

KS
þ 1
KΦ

(A2)

Denote the total volumetric strain as ϵv (ϵv ¼ ∇ ∙ u), and the change in the porosity, either intrinsic or partial,

as δΦ. The ratio between the two quantities thus follows

δΦ
∇ � u ¼ δVΦ=V0

δV=V0
¼ 1=KΦ

1=K
¼ 1=K � 1=KS

1=K
¼ 1� K

KS
¼ α (A3)

where δVΦ and δV indicate changes in the pore volume and the total volume, respectively, and V0 indicates
the initial total volume.

Therefore, α ∇ ∙ u x ; t
� �

quantifies the change in the porosity.

Table A2
Pseudocode for Computing Element-Wise Λ0 x

� �
1.Assign (or import) the hydraulic properties of matrix and fractures
2.Back calculate bH(i) (i = 1 ~ nf) from equation (19) using given fracture permeability
3.Set up a function FNN to determine the local fracture node number in a hybrid element (shown in Table 1)
4.Λ0 = ones(ne, 1); % ne = total number of elements
for i = 1: length(HEI)
Using FNN, determine the local fracture node number lfn(1) and lfn(2)
Using lfn(1) and lfn(2), calculate fracture line element length le
Λ0(HEI(i)) = 1/(1/Λ0(HEI(i)) + (0.5*bH(HEFI(i))*le)/A(HEI(i)))

end

Table A1
Pseudocode for Asymptotic Model Domain Setup and Hybrid Element Identification

1. Generate (or import) a 2-D asymptotic model domain with a pre-defined DFN containing nf 1-D fractures
2. Store θ(i); determine li(x) = a(i)*x � y + c(i), i = 1 ~ nf; Store index of type I and type II fractures as FI and FII

3. Conforming meshing into linear triangular elements; calculate element area A(i)
4. Set up a node identification mismatch function Findnode with a pre-defined tolerance
5. Set up a function Findelement for identifying elements containing a certain type of nodes
6. Using Findnode and Findelement
6.1 Identify boundary nodes and boundary elements
6.2 Identify fracture nodes and hybrid elements
for k = 1: nf
Identify the fracture node index (FNI) vector of the kth fracture (FNIk); FNI = [FNI; FNIk]
Identify the hybrid element index (HEI) vector of the kth fracture (HEIk); HEI = [HEI;HEIk]
Store a vector indicating the type of fracture these hybrid elements are associated with (HEFT)

if k ∈ FI, HEFTk = ones(length(HEIk),1)*1;
elseif k ∈ FII, HEFTk = ones(length(HEIk),1)*2;
end
HEFT = [HEFT; HEFTk];

Identify the index of the fracture a hybrid element is associated with (HEFI)
HEFI = [HEFI; ones(length(HEIk),1)*k]

end
7.Determine the positivity/negativity of a hybrid element with respect to a conforming fracture
for i = 1: length(HEI)
x = mean(x(i)); indicator(i) = li(x )
if indicator(i) > 0, n(i) = [sin(θ(HEFI(i))); -cos(θ(HEFI(i)))]
else n(i) = [-sin(θ(HEFI(i))); cos(θ(HEFI(i)))]
end

end
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A.3 Discrete Fracture Network Implementation

Here the pseudocode for two steps and one subroutine pertaining to implementing a predefined DFN is
given. The other steps, including assigning material properties, generating finite element data processing
arrays, computing element-wise matrices and vectors, assembling global matrices and vectors, backward
Euler time-stepping, and Newton-Raphson iteration, can be completed following standard procedures; the
details of those steps are omitted (Table A1).

Repeated values in HEI indicate elements conforming to multiple fractures. We are now in a position to revisit

the geometry-dependent parameter,Λ0 x
� �

. Equation (4) states thatΛ0 x
� �

can be calculated by splitting the

fracture elemental volume in the computational domain into two equal parts and allocating them to the two

conforming hybrid elements. For a 2-D problem, Λ0 x
� �

reads

Λ0 xð Þ ¼

AH

AH þ 1
2

Xncf
r

br lr
e

; x ∈ΩH

1; elsewhere

8>>><>>>: (A4)

where AH is the area of a hybrid element, ncf is the number of fractures a hybrid element conforms to,
br is the thickness of the rth conforming fracture, and ler is the length of the line element on the rth con-
forming fracture. The pseudocode shown in Table A2 automatically considers multiple fractures conform-
ing to a hybrid element.

Table A3
Pseudocode for Augmenting the Elemental Matrices due to Fractures Within the Jacobian and Residual

1. Compute elemental Mme, Kme, and Gme of the fracture-free discrete system (the first terms in equations (72), (73),
and (74))

2. Execute elemental modifications to the initial Jacobian and residual
for i = 1: length(HEI)
2.1 Determine lfn(1), lfn(2), le (see Table A2); compute Nfi
2.2 Determine Qfi and Lfi in Table 1 from lfn(1) + lfn(2) = 3,4 or 5
2.3 Compute Mfe(i), Kfe(i) due to fractures using bHi0 (the second terms in equations (72) and (73))
2.4 Compute Gfe(i) using bMi (the second term in equation (74))
2.5 Compute Ktre due to mass transfer
2.5.1 if HEFT(i) = 1, compute Kmfe using bHi0 (third term in equation (73)), Ktre(i) = Kmfe/2; end
2.5.2 if HEFT(i) = 2, compute the following as part of the fourth term in equation (73):

Kfme = �∫(Qfi’*Nfi’*n(i)*κm(HEI(i))*grad(Nm(HEI(i))) dΓ ; K
tre(i) = Kfme; end

2.6 Elemental modification (halved before global assembly)
2.6.1 Mme (HEI(i)) = Mme (HEI(i)) + Mfe(i)/2;
2.6.2 Kme (HEI(i)) = Kme (HEI(i)) + Kfe(i)/2+ Ktre(i);
2.6.3 Gme (HEI(i)) = Gme (HEI(i)) + Gfe(i)/2;

end
3. Within each Newton-Raphson iteration, update elemental modifications to the Jacobian and residual:
for i = 1: length(HEI)
3.1 Get the average fracture nodal pressure: ζ fi = (ζ (lfn(1)) + ζ (lfn(2)))/2;
3.2 Compute coefficient ai from ζ fi (equation (84))
3.3 Update Mfe(i), Kfe(i) from 2.3, Kmfe from 2.5.1 for the Jacobian (equation (86))
3.3.1 Mfe(i) = Mfe(i) × (ai + Cfi × ζ fi);

Kfe(i) = Kfe(i) × (ai
3 + 3ai

2 × Cfi × ζ fi);
Kmfe = Kmfe × (ai

2 + 2ai × Cfi × ζ fi); K
tre(i) = Kmfe/2;

3.3.2 Repeat 2.6.1, 2.6.2
3.4 Update Mfe(i), Kfe(i) from 2.3, Kmfe from 2.5.1 for the residual (equations (82) and (83))
3.4.1 Mfe(i) = Mfe(i) × ai

Kfe(i) = Kfe(i) × ai
3

Kmfe = Kmfe × ai
2; Ktre(i) = Kmfe/2;

3.4.2 Repeat 2.6.1, 2.6.2
end
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Based on sections 4.3 and 5, we include the effect of fractures by implementing the following subroutine
(Table A3), which automatically accounted for multiple conforming fractures. Further, the positive and
negative hybrid elements with respect to a conforming fracture are separately tackled using their respective
n (see Table A1); the full discontinuity term is ensured upon assembly of the global K.
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